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updating the reader on the most recent discoveries in the 
field.

Introduction
The heat shock response (HSR) is a rapid genetic response 
triggered by a plethora of stresses that disrupt protein 
homeostasis (proteostasis). The response is primarily 
mediated by the HSF1 protein, which detects stress and, 
upon activation, initiates the transcription of genes asso-
ciated with protein reparation, folding, transportation, 
complex formation and degradation [1]. HSF1 achieves 
this by binding to specific DNA sequences known as heat 
shock elements (HSEs), which are localized within the 
promoters of genes encoding a superfamily of heat shock 
proteins (HSPs). These HSPs function as chaperones and 
co-chaperones, classified by their molecular weight and 
varying in their effector or complementary roles [2–4]. 
The stresses that induce HSR are diverse and include 
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This review aims to provide an accessible yet compre-
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Heat shock factor 1 (HSF1) is the master orchestrator of the heat shock response (HSR), a critical process for 
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promotes angiogenesis or epithelial-mesenchymal transition (EMT) as these cells enter a form of “HSF1 addiction”. 
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heat, oxidative stress, heavy metal and toxin exposure, 
infection, inflammation, or stress caused by various med-
ications. Basal levels of HSPs provide constant protection 
to the cell by maintaining protein homeostasis, while the 
adaptive HSR enhances their expression to manage both 
acute and chronic stress conditions [5].

Among the six HSF isoforms encoded by the human 
genome (HSF1, HSF2, HSF4, HSF5, HSFX, and HSFY) 
[6], HSF1 is regarded as the master regulator of the HSR 
since the deletion of Hsf1 leads to insufficient HSR [7, 8]. 
While HSF2 exhibits limited transactivation activity for 
HSP expression under stress [9, 10], it seems to hold an 
important role in the co-regulation of the HSR by both 
positively and negatively modulating HSF1’s transcrip-
tional activity, for instance, by forming heterotrimers 
with HSF1 [11]. So far, HSF4 has been reported to have 
an important developmental function [12]. The remain-
ing HSFs have not yet been extensively studied, however 
a strong role in gametogenesis is implied [13]. Notably, 
research indicates that “other mammalian HSFs or dis-
tinct physiological pathways do not compensate for HSF1 
in the physiological response to heat shock” [14].

Here, we focus on the master regulator of HSR, the 
HSF1, which trimerizes upon the introduction of stress 
and translocates to the nucleus, where it initiates tran-
scription of HSE-associated genes. This review aims to 
provide a concise overview of HSF1’s structure, its mech-
anism of action, and its many roles in the regulation of 
cell division and carcinogenesis.

HSF1 structure, activation and regulation
Structure of HSF1
Under physiological conditions, human HSF1 exists as 
a monomer with minimal DNA-binding capacity. The 
monomer comprises several functional domains (Fig. 1) 
[1]. Upon exposure to stress, HSF1 undergoes trimer-
ization, allowing the N-terminal DNA-binding domain 
(DBD) to ensure highly specific DNA binding to specific 
DNA sequences known as heat shock elements (HSEs). 
The HSEs are characterized by repetitive nGAAn motifs 
organized in a palindromic arrangement, wherein each 
nGAAn sequence is followed by its reverse comple-
ment nTTCn, resulting in a canonical structure such 
as nGAAnnTTCnnGAAn. The DBD, characterized by 
a looped helix-turn-helix structure, recognizes these 

sequences in the major groove of DNA and ensures 
robust transcriptional activation and an effective HSR 
[15, 16].

Trimerization is the pinnacle of HSF1 activation, 
increasing its binding capacity by several orders of mag-
nitude [16]. This is facilitated by the leucine zipper oligo-
merization domain, which is connected to the DBD via 
a flexible linker. It comprises two hydrophobic heptad 
repeats (HR-A and HR-B). Specific mutations in this 
region produce a variety of conformational states (e.g. 
folded monomer, unfolded monomer, stable trimer) 
[17]. The subsequent regulatory domain (RD) is highly 
flexible, as it manages the stability and activity of HSF1 
through interactions with other domains and undergoes 
several post-translational modifications that greatly influ-
ence the transactivation capacity of HSF1 [18, 19]. The 
stabilization of the monomeric state and repression of 
spontaneous trimerization and activity is mediated by 
yet another hydrophobic heptad repeat (HR-C). This sta-
bilization is thought to be possible through interactions 
between HR-C and HR-A/B domains, thus suppressing 
oligomerization. Mutations in HR-C may also result in 
the formation of constitutively active HSF1 trimers with 
DNA-binding capability [20]. Notably, the mammalian 
HSF4 and HSF1 of Saccharomyces cerevisiae or Kluyvero-
myces lactis lack the HR-C domain and are intrinsically 
trimeric [20, 21]. Finally, located at the C-terminal, is the 
transactivation domain (TAD). It is rich in hydropho-
bic residues and facilitates appropriate stress response 
via transcriptional activation of target genes. It is regu-
lated by the RD and conformational changes that lead to 
trimerization, while it appears to be non-responsive to 
stress by itself [18, 19, 22].

Activation and regulation of HSF1
The transition from monomeric to trimeric DNA-bind-
ing state is a fundamental aspect of HSF1’s activation 
across all eukaryotes [9]. This activation initiates HSR, 
which can be observed microscopically as changes in 
nuclear morphology. Activated HSF1 localizes to sub-
nuclear structures known as nuclear stress bodies (NSBs) 
[24]. These NSBs form on specific chromosomal loci, 
particularly on chromosomes 9, 12, and 15, in response 
to various stressors, including chaperone or proteasome 
inhibition [25, 26]. In the context of NSBs, HSF1 binds 

Fig. 1  Schematic representation of the domain structure of human heat shock factor 1 (HSF1) [23]. The N-terminal DNA-binding domain enables interac-
tion with heat shock elements (HSEs) in target gene promoters, with binding affinity significantly enhanced upon trimerization. Trimerization is driven by 
hydrophobic heptad repeats A, B, and C (HR-A/B/C). The transactivation domain (TAD) promotes transcriptional activation of heat shock genes, while its 
activity is modulated by the regulatory domain (RD)
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to Sat III sequences, which, while not canonical HSEs, 
contain HSE-like motifs due to their AT-rich, repetitive 
nature. This binding is critical for initiating NSB forma-
tion, as it triggers the transcription of non-coding Sat 
III RNAs, which creates a scaffold for NSB assembly, 
and recruits necessary transcriptional machinery [27]. 
Recent studies have shown that the formation of NSBs 
involves not only HSF1’s DNA binding but also its abil-
ity to undergo liquid-liquid phase separation. Zhang et al. 
[28] demonstrated that HSF1 forms small nuclear con-
densates via liquid-liquid phase separation at heatshock-
protein gene loci. This phase separation enriches multiple 
transcriptional apparatuses through co-phase separation, 
promoting the transcription of target genes. Addition-
ally, Gaglia et al. revealed that HSF1 foci initially form as 
dynamic, fluid condensates but may transition to a more 
stable, gel-like state under prolonged stress. This transi-
tion impacts the transcriptional activity of HSF1 and the 
survival of stressed cells, suggesting that phase separation 

plays a critical role in tuning HSF1’s regulatory functions 
under proteotoxic conditions [29].

Despite extensive research, a complete understanding, 
such as how HSF1 senses stress and how it is regulated, 
remains elusive, with multiple hypotheses and models 
suggesting a cooperative role in driving the heat shock 
response. Although the HSR was originally associated 
with high temperature induced proteotoxicity [30], it 
is now well known to be triggered by a diverse array of 
stressors (Fig. 2a).

It can be hypothesized that HSF1 activation is not 
entirely dependent on its sensing of stress but perhaps 
by the recruitment of its regulators. Unsurprisingly, the 
most widely accepted model of HSF1 activation is the 
chaperone titration model. It suggests that monomeric 
HSF1 remains in a multichaperone complex with various 
HSPs. Upon the introduction of stress and the subsequent 
increase in protein misfolding, the HSPs dissociate from 
the complexes enabling the trimerization of HSF1, which 

Fig. 2  Overview of the heat shock response (HSR), from stress induction to the chaperoning action of heat shock proteins (HSPs). (A) HSR is activated by 
various stressors, including heat [30], cold [31], acid [32], base [33], inflammation [34, 35], increased reactive oxygen species [36, 37], heavy metals and 
toxins [38, 39], as well as mechanical stress [40]. (B) Stress triggers the trimerization of HSF1, which leads to its strong nuclear localization and increased 
DNA-binding capacity [16]. (C) Trimerized HSF1 binds the heat shock elements (HSEs) within target gene promoters, driving the transcription of HSP 
genes [1]. (D) HSPs, often in collaboration with co-chaperones, mitigate proteotoxic stress through diverse mechanisms, including protein repair, fold-
ing, degradation, transport, and complex formation. While a basal level of HSPs supports cellular housekeeping, the HSR significantly upregulates their 
inducible expression [41]
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ensures transcription of more HSPs. The excess HSPs 
then help regulate HSF1 activity through a negative feed-
back loop [42]. It is supposed that increased amounts of 
Hsp90 and Hsp70 negatively regulate active HSF1 levels, 
assisting in the attenuation of HSR by inhibiting trimer 
formation. Additionally, HSF1 transactivation capacity 
is also modulated by interactions with Hsp70 and Hsp40 
[42–44]. Furthermore, trimeric HSF1 has been found to 
interact with the Hsp90-FKBP52-p23 complex, and inhi-
bition of this complex’s components delays the attenu-
ation of HSF1 DNA-binding activity, suggesting that 
Hsp90 plays a role in inhibiting trimeric HSF1 [45, 46]. 
While many studies argue that Hsp90 is the main chaper-
one regulator, recently Pincus et al. postulated Hsp70 to 
be the main regulator of yeast HSF1 [47, 48]. This seems 
to be the case also in Caenorhabditis elegans [49] and 
importantly humans [50]. In this relevant study, Mayer 
and colleagues describe Hsp70 binding regions at HSF1 
in TAD and HR-B, and argue for the main role of Hsp70 
in HSF1 regulation. Lastly, Simoncik et al. reported that 
HSF1 can adopt an unfolded, inactive monomeric con-
formation in both in vitro and cellular settings with-
out chaperone assistance. This unfolded monomer can 
undergo a conformational change and assemble into 
active trimers in response to stress conditions that induce 
protein denaturation, positioning HSF1 as a direct sensor 
of proteotoxic stress. Nevertheless, a negative feedback 
mechanism ensures that once chaperones—upregulated 
following HSF1 activation—restore cellular proteostasis, 
they become available to actively disassemble HSF1 tri-
mers and refold HSF1 into its inactive monomeric con-
formation. This process, primarily mediated by Hsp70, 
effectively resets HSF1 to its repressed state [51].

While the chaperone titration model is compelling, it is 
far from being the only mechanism of HSF1 regulation. 
Direct sensing of, for example, heat, oxidative stress, or 
low pH levels has been demonstrated in vitro on puri-
fied HSF1 and could explain the protein’s ability of rapid 
activation in cells [36, 52–54]. This intrinsic thermo-sen-
sory ability is further supported by hydrogen-deuterium 
exchange mass spectrometry (HDX-MS) data, showing 
significant structural changes in HR-A and HR-C after 
heat exposure [55]. For some time HSF1 was also con-
sidered to be activated via a ribonucleoprotein complex 
consisting of eEF1a1 and HSR1 (heat shock RNA 1) [56]. 
The RNA molecule itself was reported to have a thermo-
sensing function [57]. However, based on a recent study 
the concept of eukaryotic heat shock RNA seems invalid 
[58].

Although HSF1 has been thoroughly investigated in 
vitro in its purified form and various cell lines, an organ-
ismal approach is often missing. Morimoto and col-
leagues show that the HSR in Caenorhabditis elegans, 
alongside other heat-related processes, is regulated by a 

thermo-sensory neuron, implying that the HSF1 activa-
tion is not necessarily purely cell-dependent, further 
highlighting the complexity of its regulation [59]. Of 
note, so far the only known inductor of HSF1 transcrip-
tion is NRF2 [37].

Evidently, the regulation of HSF1 is influenced mainly 
by its structure, post-translational modifications, how-
ever, are known to tune various steps of its activity such 
as trimerization, nuclear translocation, DNA bind-
ing, transactivation capacity or its half-life [23, 60]. As 
reported by the PhosphoSitePlus database [61] HSF1 
can be modified at 56 residues in humans. Even though 
many phosphorylations in the RD are considered to be 
markers of HSF1 activity, Budzýnski et al. demonstrate, 
that these phosphorylations are not necessary for proper 
HSF1 cellular localization and DNA-binding capacity 
[62]. It could be hypothesized that these modifications 
often merely coincide with fluctuations of HSF1 activity, 
rather than directly control its state. To fully understand 
HSF1 regulation, additional research of the exact effects 
of post-translational modifications is required.

HSF1 and cell cycle regulation
HSF1 regulates cell division
Dysregulated cell division is an ever-present phenome-
non spanning multiple hallmarks of cancer [63] and over 
the years, HSF1 has emerged as a critical and multifac-
eted regulator of mitosis. The connection between HSF 
proteins and cell cycle regulation was first established 
in the early 1990s through studies on mutant yeast by 
Smith and Yaffe. Their research showed that yeast cells 
carrying a recessive mas3 mutation—disrupting the gene 
encoding yeast HSF—experienced cell cycle progression 
defects [64]. This finding spurred further investigations 
into HSF1’s role in mitotic division various models, from 
yeast and mouse embryonic fibroblasts to human cell 
lines, underscoring its intricate involvement in cell cycle 
regulation.

Calderwood and colleagues proposed that HSF1 may 
influence the G1 phase independently of HSP transcrip-
tion, noting that HeLa cells overexpressing HSF1 exhib-
ited a prolonged G1 phase under stress-free conditions 
[65]. Later, He and Fox provided additional insights, 
demonstrating that while HSF1 expression levels remain 
stable throughout the cell cycle, its DNA-binding activity 
fluctuates. HSF1 binding to HSEs doubled during the S 
phase compared to G1 and G2/M phases, a finding later 
supported by Gross and colleagues [66, 67].

An unexpected interaction, described by Lee’s team, 
reported that HSF1 interacts with CDC20 during cell 
division, indirectly inhibiting APC/C activity. In early 
mitosis, HSF1 is phosphorylated by polo-like kinase 1 
(Plk1) at serine 216. This phosphorylation allows for the 
binding of CDC20 (disrupting the coupling of CDC20 
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and CDC27, canonical subunits of the APC/C complex) 
[68, 69]. This modification is necessary for HSF1 degra-
dation through the SCFβ-TrCP pathway at the spindle pole, 
facilitating APC/C activation and mitotic progression 
[70, 71]. These findings suggest that HSF1 degradation 
via its interaction with CDC20 is crucial for completing 
mitosis and maintaining cell cycle control.

HSF1 and stress during mitosis
As cell cycle progresses, the accessibility to DNA for 
transcription to occur is variably limited, because the 
chromatin’s structure folds and unfolds across different 
phases. During mitosis, when chromatin is highly con-
densed, most transcription factors are unable to bind 
effectively, leaving dividing cells particularly vulnerable to 
stress [72]. HSF1’s chromatin access is markedly reduced 
during mitosis, from 1,242 binding sites in heat-stressed 
cycling cells to just 35 sites in mitotic heat-stressed cells. 
The few retained HSF1 loci primarily encode HSPs, such 
as Hsp90. Interestingly, HSF2 maintains hundreds of 
binding loci across both cycling and mitotic cells, though 
these interactions are likely insufficient to drive tran-
scription due to RNA Polymerase II inactivity during 
mitosis [73, 74].

Newly synthesized proteins are particularly sensitive to 
proteotoxic stress, which may serve as the primary trig-
ger for HSF1 activation, as suggested by Tye and Church-
man [75]. Various stressors capable of inducing HSR can 
inhibit cell cycle progression by affecting its checkpoints. 
Given this, proliferating cells predictably exhibit high 
HSF1 activity during the S phase. HSPs– the downstream 
effectors of HSF1– hold an important role in the regu-
lation of proteins relevant for mitotic progression. For 
example, Hsp90 interacts closely with CDK1 in fission 
yeast, underscoring its regulatory role [76–78]. Sawarkar 
and colleagues further identified Hsp90 as essential for 
maintaining HCFC1-associated cell cycle genes, suggest-
ing that HSPs are crucial for modulating cell cycle arrest 
and re-entry under stress conditions [79]. Additionally, 
evidence supports an interplay between HSF1 and p53. 
Logan and colleagues demonstrated that HSF1 enhances 
p53-mediated transcription, as silencing either HSF1 or 
p53 significantly reduced the expression of key p53 tar-
get genes, including p21 and PUMA, which are pivotal 
for cellular stress responses [80]. Li and Martinez fur-
ther highlighted the importance of HSF1 for p53 nuclear 
localization and checkpoint activation [81].

HSF1’s effects on cell division in cancer
The established links between HSF1 and cell cycle regula-
tion strongly indicate its role in cancer progression. Wu 
and colleagues observed elevated HSF1 mRNA and pro-
tein levels in metastatic prostate cancer cell lines (PC3M) 
compared to non-metastatic lines (PC3). This increase 

also extended to key HSF1 downstream targets, including 
Hsp27, Hsp70, and Hsp90. Notably, in patient-matched 
samples, HSF1 expression was lower in normal cells than 
in cancerous tissues, highlighting this differential expres-
sion pattern [82]. In concordance with the importance 
and increased expressions of HSF1 in cancer, the silenc-
ing of HSF1 led to a significant decrease in the prolifera-
tive capability in human melanoma cells [83]. Consistent 
with these findings, Calderwood’s work introduced a 
dominant-negative HSF1 (DN-HSF1) construct to inhibit 
HSF1 transcriptional activity in prostate carcinoma cells. 
This intervention reduced aneuploid cell populations and 
promoted cyclin B1 degradation, a process essential for 
completing mitosis [84]. A surprising finding highlight-
ing the complex nature of HSF1 in cell division regulation 
came into play, when Momonaka et al. described a sig-
nificantly reduced proliferation in HeLa cells expressing 
constitutively active HSF1 [85].

Evidently, both HSF1 knockdown and overexpression 
contribute to cell cycle instability. Overexpression of 
HSF1 has been associated with an increased proportion 
of cells in the G1 phase, which may lead us to a conclu-
sion that HSF1 could potentially play a role in the sup-
pression of cancer growth, however, more probably 
points to a more complicated role in cell cycle regulation 
[65, 85]. Cancer cells often endure genomic instability 
and fluctuating microenvironments, conditions where 
elevated HSF1 activity, based on its reparative functions, 
likely support survival. The role of Hsp90 and the inef-
ficiency of HSR compensation during division provide a 
rationale for targeting Hsp90 in highly proliferative and 
metabolically active cancers. Several clinical trials testing 
Hsp90 ATPase inhibitors have demonstrated promising 
anti-cancer effects, underscoring the need to consider the 
specific environmental context of each tumor [86, 87].

Conclusions on HSF1’s role in cell division
In summary, the available data highlights HSF1’s crucial 
role in cell division, particularly during key checkpoints 
where cells determine whether to proceed through the 
cycle. Its diverse functions and complex interactions 
across all phases present significant challenges for cell 
cycle and HSF1 researchers alike. Moreover, distinguish-
ing between the effects of HSF1 in stressed versus non-
stressed conditions remains essential. Given its rapid 
activation in response to stress, meticulous handling of 
samples is necessary to obtain reliable data. For instance, 
trypsinization—the most common method for subcul-
turing cells—induces significant changes in the proteome 
and alters levels of HSF1 downstream targets such as 
Hsp60 [88].
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HSF1 promotes cancer development
Properly functioning HSF1 and an intact HSR provide 
many benefits to neural cells, notably through their 
anti-proteotoxic effects, which are crucial for protect-
ing against aging and age-related pathologies. While 
impaired HSF1 activation does not directly cause neu-
rodegenerative diseases, it contributes to plaque forma-
tion, neuronal cell death, and disease progression due 
to increased protein misfolding and aggregation [6]. 
Contrary to its helpful role in the central nervous sys-
tem, HSF1 has been observed to quite effectively enable 
tumorigenic growth (Fig. 3). Although HSF1 is not con-
sidered to be a tumor suppressor or a typical oncogene, it 
influences signaling pathways associated with oncogenic 
hallmarks including growth, proliferation, apoptosis, 
metabolism, angiogenesis or cell motility [89]. Numer-
ous in vitro studies have demonstrated that cancer cell 
lines are highly dependent on HSF1, with significantly 
reduced growth rates observed in HSF1-depleted hepato-
cellular carcinoma (HCC), melanoma, multiple myeloma, 
malignant peripheral nerve sheath tumors, and in breast 
and pancreato-biliary cancers [90–95]. In contrast, non-
cancerous cell lines show little to no effect from HSF1 
deletion [92, 94]. Neurodegenerative diseases are often 
characterized by the accumulation of misfolded pro-
teins and an age-related decline in the neuronal capac-
ity to counter proteotoxic stress. HSF1 activation has 
been shown to protect neurons from apoptosis and cell 
death through its chaperone activity [96]. Pharmacologi-
cal enhancement of HSF1 activity could offer therapeutic 
and preventive benefits for individuals at risk of or suf-
fering from neurodegenerative diseases. However, over-
expression of HSF1 may promote tumorigenesis, creating 

a state of “HSF1 addiction” in cancer cells. Thus, con-
trolled, chronic activation of HSF1 presents a potential 
therapeutic strategy for neurodegenerative conditions 
[97].

In concordance with in vitro studies;in vivo and clini-
cal studies also profoundly support strong pro-oncogenic 
function of HSF1. In many human cancers including 
HCC, breast cancer, endometrial carcinoma, oral squa-
mous cell carcinoma or prostate cancer; increased HSF1 
levels compared to non-cancerous tissues are observed. 
The increased HSF1 concentrations are associated with 
poor prognosis, larger tumor size and shorter overall 
and disease-free survival [98]. HSF1 mRNA levels are 
increased in various cancers, including breast, endome-
trial, and ovarian tumors [99–101], often due to HSF1 
gene amplification and mutations in splicing factors 
[101, 102]. Additionally, in 2007 it was noted that HSF1 
contributed to lymphoma development in p53-/- mice, 
suggesting a role in lymphomagenesis [103]. Further 
research by Dai’s team highlighted HSF1’s protective role 
in tumors of p53 and Ras mutated mice [94]. In a differ-
ent study the authors proposed a mechanism by which 
HSF1 promotes the growth of pre-malignant cells and 
HCC by stimulating lipid synthesis and cellular longev-
ity in the presence of carcinogens, with HSF1-deficient 
mice showing reduced cancer progression [104]. HSF1’s 
prooncogenic role has also been described in mouse 
mammary tumors. The deletion of HSF1 reduced tumori-
genesis and metastasis in ERBB2 overexpressing cells, 
decreasing tumor growth rate and suppressing angiogen-
esis [105, 106].

Support for the role of HSF1 in cancer has been fur-
ther reinforced by various independent studies using 

Fig. 3  Multifaceted role of human heat shock factor 1 (HSF1) in neurodegenerative disease and cancer
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xenograft models. In these, HSF1 gene knockdowns 
resulted in impaired growth rates, reduced invasion and 
metastatic capabilities of xenografted HCC and mela-
noma cells in immunocompromised mice [107, 108]. 
Overexpression of HSF1, on the other hand, exacerbated 
pro-invasive and migration capabilities of melanoma 
xenografts in vivo [109, 110].

Overall, it is apparent that HSF1 activity contributes to 
malignant transformation and supports tumor progres-
sion. However, the question remains whether elevated 
HSF1 activity in tumors is solely a response to proteo-
toxic stress associated with cancer or if its expression and 
activation are directly regulated by oncogenic signaling.

Molecular dynamics of HSF1 in oncogenesis
As previously discussed, HSF1 is typically activated by an 
array of stressors. Cancer cells, however, appear to keep 
HSF1 constitutively activated [94, 111], indicating a state 
of “HSF1 addiction” driven by continuous cellular stress. 
Factors such as acidic or hypoxic microenvironments, 
elevated protein synthesis, aneuploidy, genetic mutations, 
and metabolic stress contribute to this persistent pro-
teome stress. Despite this understanding, the complete 
picture of continual HSF1 activation remains elusive. The 
HSF1 protein is, for example, extensively phosphorylated. 
These modifications act as both stimulatory and inhibi-
tory factors and have been well mapped out, albeit their 
complex interactions in HSF1 regulation must be fur-
ther studied [112]. Various signaling pathways including 
MAPK/ERK, PI3K/Akt, LKB1/AMPK, GSK-3, JNK, p38/
MAPK, PKC, PKA, PLK1, CK2, DYRK2, IER5, and Sir-
tuin 1 regulate HSF1 activation through phosphorylation, 
dephosphorylation, or deacetylation [60, 113–115] only 
adding layers of complexity to the difficult research of 
HSF1 regulation.

HSF1 facilitates pathway stabilization
To understand how HSF1 activation influences cellu-
lar behavior, it is essential to study the effectors of HSR, 
particularly the inducible chaperones Hsp70 and Hsp90, 
which are among the most abundant. The vast range 
of HSP targets suggests that the consequences of their 
overexpression are very wide and non-specific. Hsp70 
and Hsp60 seem to interact with all conformationally 
unstable proteins [124]. Hsp90 supports the stability and 
function of hundreds of client proteins including mainly 
kinases (60%), 3 ubiquitin ligases (31%) ad transcrip-
tion factors (< 7%) [125].A list of the entire interactome 
is being maintained and updated by Didier Picard [126]. 
Many of these clients are involved in pathways associated 
with oncogenic progression (e.g. ErbB2, Bcr-Abl, VEGFR, 
Akt, Met, p53). For instance, KSR1 (kinase suppressor of 
RAS 1) is a known client of Hsp90, meaning Hsp90 chap-
erones KSR1 to prevent its degradation and maintain its 

function. In this way HSF1 has been shown to support 
MAPK signaling by stabilizing KSR1, a scaffolding pro-
tein critical for MAPK/ERK pathway activation (Fig.  4) 
[92]. Comparably, EGFR, Akt and MIF pathways, all 
important in tumorigenesis, can be disrupted by an HSF1 
knockdown [127–129].

HSF1 enables epithelial-mesenchymal transition
HSF1’s role in oncogenesis extends beyond pathway 
stabilization. In ovarian cancer cells, HSF1 deficiency 
impairs the expression of key epithelial-mesenchymal 
transition (EMT) genes, including SLUG, SNAIL, ZEB1, 
and TWIST1 [130]. In another study it was observed that 
PI3K, through Akt, modulates HSF1 by phosphorylation 
of serine 326, linking PI3K signaling to HSF1-mediated 
EMT in HER2-positive breast cancer cells (Fig. 4) [113]. 
Furthermore, the deletion of HSF1 significantly reduced 
EMT of mammary epithelial cells in transgenic mice 
[106].

HSF1 plays a role in regulation of cell death
The ability of cells to undergo apoptosis is a crucial pre-
requisite in the organism’s protection against cancer. 
Many types of therapies depend on initiation of pro-
grammed cell death induced by their effects, however 
resistance to apoptosis due to alterations in its path-
ways is a common phenomenon [131]. Whether the cell 
enters into apoptosis is often in the hands of the balance 
between pro-apoptotic and anti-apoptotic proteins. HSPs 
often play a role in this delicate balance. Research on 
Hsp70 points to solid anti apoptotic activity. It has been 
shown to inhibits activation of the pro-apoptotic Bax 
[118]; prevent downregulation on anti-apoptotic MCL-1 
[118]; interfere with cytochrome C [119]; or inhibit endo-
nuclease G, thus reversing DNA fragmentation [120]. 
Supporting this, Hsp70 member 6 (HSPA6) physically 
interacts with anti-apoptotic Bcl-XL and increases its 
levels [132]. Furthermore, HSF1 expression leads to an 
upregulation of BAG3 (Bcl-2-associated athanogene-3)– 
a Hsp70 cochaperone– which appears to play a role in 
the stabilization of Bcl-2 family proteins, promoting 
apoptosis evasion [133]. This HSF1/Hsp70/BAG3 axis is 
associated with fortified cell resistance to treatment in 
glioma and gastric cancer [134, 135]. In similar fashion, 
Hsp90 exerts a protective effect on cancer cells via eleva-
tion of Bcl-2 and Bcl-XL expression (Fig.  4), or also by 
attenuation of cleaved caspase-3 expression, achieved by 
the downregulation of TLR-4 and ErbB2 receptors [121]. 
Furthermore, a direct association between Hsp60 and 
cyclophilin D, a component of the mitochondrial perme-
ability transition pore, has been observed. Silencing of 
Hsp60 led to caspase dependent apoptosis and growth 
inhibition of intracranial glioblastoma [136]. These 
examples show the significant roles HSPs– and therefore 
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HSF1– can play in the evasion of cell death via pathway 
stabilization.

On the other hand, some studies also point to the 
ambivalent nature of HSF1 in its pro-apoptotic and anti-
apoptotic effects. For example, Benderska et al. describe 

a novel observation of the typically pro-survival HSF1 
being redirected by TNF to a pro-apoptotic program 
[137]. In concordance with this surprising revelation, 
HSF1 has been observed to bind sequences in the introns 
of the NOXA gene, upregulating its expression and thus 

Fig. 4  The many effects of HSF1 in cancer. HSF1 plays diverse roles in tumorigenesis by modulating various cellular processes. It drives metabolic repro-
gramming in cancer cells, aiding the shift to aerobic glycolysis [116, 117]. HSF1 also promotes tumor survival by preventing cell death by altering the lev-
els of various pro- and anti-apoptotic proteins [118–121]. It is also known for indirectly stabilizing oncogenic signaling pathways– for example, the MAPK/
ERK cascade, which regulates KSR1, a key scaffolding protein required for proper pathway activation [92]. Additionally, phosphorylation of HSF1 at serine 
326 is associated with epithelial-to-mesenchymal transition (EMT), and enhanced tumor invasiveness [113]. Beyond cancer cells, HSF1 can influence 
the tumor microenvironment (TME) by reprogramming natural killer (NK) cells, leading to reduced cytotoxicity against tumor cells [122]. Furthermore, 
HSF1 expression in cancer-associated fibroblasts (CAFs) contributes to tumor progression through the secretion of extracellular vesicles (EVs) containing 
pro-tumorigenic factors such as inhibin β-A and thrombospondin 2 [123]. These diverse functions establish HSF1 as a central and complex regulator of 
cancer progression
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promoting apoptosis in heat sensitive cells [138]. Despite 
the evident anti-apoptotic effects of HSF1 and its down-
stream effectors– the HSPs–mechanisms underlying the 
relationship between HSF1 and apoptosis still need to be 
further elucidated.

HSF1 influences metabolism in cancer
Cancer cells are known to undergo a metabolic shift from 
the preferential oxidative phosphorylation to aerobic 
glycolysis referred to as the „Warburg effect“ [139] and 
HSF1 is not exempt from playing a role in this phenome-
non. HCC and breast cancer have been shown to depend 
on HSF1 to sufficiently express lactate dehydrogenase 
(LDH), where LDH is crucial for glycolytic efficiency and 
further malignant growth and promotion. Down-regu-
lating HSF1 leads to decreased LDH levels and therefore 
ineffective glycolysis, halting growth of cancer cells [117]. 
Similarly, HSF1 promotes expression of pyruvate dehy-
drogenase kinase 3 (PDK3), which enhances glycolysis 
and analogically supports cancer progression and resis-
tance (Fig. 4). A positive feedback loop is implemented, 
as PDK3 prevents HSF1 from degradation via FBXW7-
dependent polyubiquitination [116].

HSF1 is further incorporated in cancer metabolism by 
positively regulating biosynthesis of mevalonate and cho-
lesterol. These molecules are crucial for the RAS-MAPK 
pathway [140]. Accordingly, mouse T-cell acute leukemia 
(T-ALL) displayed a dependency on HSF1 to help main-
tain MAPK/ERK signaling, as well as ATP-producing 
capacity. Here, HSF1 depletion leads to an energy sav-
ing state stemming from reduction of mTORC1 activity, 
effectively slowing down growth and reducing oncogenic 
signaling [141]. HSF1 was also found to promote malig-
nancy by suppressing AMPK, therefore reprogramming 
lipid metabolism and enhancing protein lipidation [142].

HSF1 indirectly influences angiogenesis
Notably, HSF1 positively regulates human antigen R 
(HuR) transcription, which is essential for VEGF path-
ways involved in hypoxia-induced angiogenesis [143]. 
HSF1 deletion leads to a downregulation of HuR result-
ing in impaired HIF-1-α translation, thereby hindering 
tumor angiogenesis (Fig.  4) [105]. An mTORC2/Akt/
HSF1/HuR feed-forward loop, promoting Rictor via 
HSF1-induced HuR activity, is furthermore associated 
with increased growth rates and aggressiveness in glio-
blastoma [144].

HSF1 alters the tumor microenvironment
Given HSF1’s truly multifaceted role, it comes as no sur-
prise that it also influences tumor microenvironment 
(TME)– a space consisting of various cell types, extracel-
lular vesicles (EVs) and signal molecules. Cancer-associ-
ated fibroblasts (CAFs) are considered to be significant 

components of the TME as they assist in angiogenesis, 
invasiveness or resistance, among others [145]. HSF1 has 
been reported to reprogram CAFs leading to expression 
of TGF-β and SDF1, supporting malignancy. Addition-
ally, such high stromal HSF1 activity strongly correlated 
with poor prognosis in early-stage breast and lung can-
cer [146]. Significant correlation between CAF HSF1 
expression and poor prognosis and overall survival was 
observed in oral and esophageal squamous carcinoma 
[147, 148]. We come closer to a mechanistic understand-
ing of HSF1’s effect on CAFs with a study by Grunberg 
et al., where HSF1 reportedly upregulated the synthesis 
and EV secretion of inhibin β-A and thrombospondin 2 
promoting gastric cancer (Fig. 4) [123].

HSF1’s effects on its vicinity are further reinforced by 
HSP export into the extracellular space via exosomes, 
likely independent of the classical secretory pathway or 
lipid raft-dependent mechanisms [149]. Through this 
transmission, HSPs may extend their stabilizing effects 
on proteins within neighboring cells, supporting a 
broader malignancy-promoting network by stress rescue 
of tumor cells [150].

HSF1 linked Immunomodulation in TME
Recently, in numerous studies extracellular HSPs exhib-
ited an immunomodulating function leading to inter-
actions with macrophages, NK cells, T-lymphocytes, 
B-lymphocytes, dendritic cells in TME [151]. However, 
direct HSF1 effect on immunomodulation is also pres-
ent. Research published in Nature Cell Biology revealed 
that in TME, activation of HSF1 in NK cells leads to a 
decrease in the expression of effector molecules, such as 
NK1.1 and IFNγ, thereby impairing their cytotoxic func-
tion against tumor cells (Fig. 4) [122]. Additionally, HSF1 
seems to prevent CD8 + T-cell recruitment to breast can-
cer microenvironment by downregulating the expression 
of CCL5. This significantly hampers immune response to 
cancer cells in the tissue. Knockdown of HSF1 in breast 
cancer cells led to decreased tumor size and increased 
CD8 + T cell infiltration, which was mediated by CCL5 
[152].

HSF1 plays a surprising role in tumor amyloidogenesis
A particularly intriguing finding by Dai and colleagues 
links HSF1 pathway disruption to amyloidogenesis in 
tumor cells [153]. While amyloid plaque formation is pri-
marily known to exacerbate neurodegenerative disease, 
their research suggests that amyloidogenesis may play a 
tumor-suppressive role, hampering melanoma growth 
and invasiveness in vivo and potentially offering a novel 
therapeutic approach [153].
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HSF1 holds a multifaceted role in cancer
In summary, HSF1 clearly acts as a truly multifaceted 
player in cancer promotion. It holds roles in tumor 
growth, survival promotion, EMT, metabolism altera-
tion, immunomodulation, and angiogenesis. It also likely 
enables cancer cell viability via the chaperoning of innu-
merable client proteins spanning molecules integral for 
well-described cancer pathways, and thus aids in onco-
genic progression. While HSF1 disruption can reduce 
tumor growth, it evidently may also induce amyloid for-
mation, potentially providing a tumor-suppressive effect. 
Additionally, HSF1’s influence extends to cells of the 
TME by reprograming the stroma and influencing the 
invasion of immune elements, while indirectly facilitating 
the exportation of HSPs via exosomes, further emphasiz-
ing its significance in cancer biology.

HSF1 as a viable option in therapy
HSF1 is inherently challenging to target due to its molec-
ular structure and complex regulation. This has directed 
research efforts toward inhibiting pathways that enable 
HSF1 activation, rather than directly targeting the protein 
itself. As previously discussed, HSF1 is overexpressed in 
various cancers and plays a key role in tumorigenesis. It 
is also linked to increased chemotherapy resistance [154]. 
Despite its importance in cancer biology, efforts to target 
HSF1 therapeutically remain in preclinical stages, with 
most approaches facing significant limitations.

One potential strategy for HSF1 suppression involves 
RNA interference therapeutics, although this area 
remains largely unexplored [60, 155]. The primary 
approach to date has focused on small-molecule inhibi-
tors, which often lack specificity and potency and target 
HSF1 indirectly. However, some compounds displayed 
tumor growth limitation with relatively low toxicity to 
non-cancer tissue in animal studies. A notable direct 
inhibitor of HSF1, DTHIB (Direct Targeted HSF1 InhiBi-
tor), achieves its effect by accelerating nuclear HSF1 
degradation and has shown strong efficacy in multiple 
models of resistant prostate cancer [156]. Optimistically, 
the indirect inhibitor CCT361814 (NXP800), discovered 
through phenotypic screening, has advanced to Phase 
I clinical trials, with completion expected by Decem-
ber 2025 [157–159]. Notably, subsequent research on 
NXP800 provided a deeper understanding of its mecha-
nism of action, revealing that it functions as an activa-
tor of the General Control Nonderepressible 2 (GCN2) 
kinase. Activation of GCN2 leads to phosphorylation 
of the eukaryotic translation initiation factor 2 (eIF2), 
resulting in reduced overall protein synthesis and the 
induction of stress-adaptive genes like ATF4, ultimately 
causing cancer cell death [160].

Indirect targeting of HSF1 through components of 
the protein homeostasis system, such as Hsp90 and the 

proteasome, has seen more clinical progress. Tumor cells 
are particularly sensitive to these inhibitors, likely due to 
elevated proliferative activity, protein synthesis, and pro-
teotoxic stress [161]. However, compensatory activation 
of HSF1 tends to occur, leading to induction of the HSR 
and overproduction of other HSPs [161, 162]. These find-
ings suggest that combining such inhibitors with HSF1-
targeted therapies could enhance their effectiveness.

Given the critical role of HSF1 in tumorigenesis and 
drug resistance, targeting this pathway offers immense 
therapeutic potential. Combining indirect HSF1 inhibi-
tors such as NXP800 with inhibitors of protein homeo-
stasis pathways or standard cancer treatments could 
improve outcomes and help overcome resistance mecha-
nisms. Future research and clinical trials will likely focus 
on these synergistic strategies to maximize the therapeu-
tic impact of HSF1 inhibition.

Conclusions.
In summary, HSF1 is a key regulator of cellular homeo-

stasis, orchestrating the HSR to maintain protein integ-
rity under stress. Its multifaceted roles extend beyond 
stress adaptation to include regulation of cell division and 
involvement in both neuroprotection and tumorigen-
esis. The research on HSF1 is proving to be a demand-
ing endeavor given its obvious role in both housekeeping 
functions and inducible necessities to facilitate an ade-
quate response to proteotoxic stress. While HSF1 offers 
protective effects in neurodegenerative diseases, its 
overexpression in cancer promotes tumor growth, high-
lighting its paradoxical nature. Due to its central role in 
the stabilization of tumorigenic pathways leading to an 
enhanced capability for cells to exhibit the many hall-
marks of cancer, HSF1 presents a promising therapeu-
tic target. However, its complex structure, activation 
and regulation make targeting HSF1 with small nuclear 
inhibitors an uneasy task. Still, further research into the 
precise mechanisms of HSF1 activation and its interac-
tions will be essential for developing targeted strategies 
to modulate its activity in disease contexts. Due to these 
problems, heightened attention should also be given to 
advancements on the frontier of RNA interference ther-
apies, though they too still face their own challenges in 
maximizing therapeutic potential.
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