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Abstract
Objective  This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the 
cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms.

Methods  ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from 
acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle 
distribution was analyzed using flow cytometry. Cell proliferation assays were conducted with CCK-8 following 
palbociclib treatment and CDKN2A downregulation. RNA immunoprecipitation (RIP) identified potential ANRIL-
associated targets, while western blotting assessed the expression levels of GSK3β/β-catenin/cyclin D1 signaling 
components and related proteins.

Results  ANRIL and CDKN2A were markedly overexpressed in AML patient samples. Knockdown of ANRIL and 
CDKN2A led to G1 phase arrest accompanied by reduced CDK2/4/6 and cyclin D1 protein levels, while ANRIL 
upregulation induced the opposite effect. Palbociclib treatment for 24 h and 48 h elevated the G1 phase cell 
population and suppressed CDK2/4/6 and cyclin D1 protein expression, demonstrating its ability to counteract 
ANRIL-driven cell cycle progression. Downregulation of ANRIL and CDKN2A also suppressed the GSK3β/β-catenin 
signaling pathway, reducing cyclin D1 expression, whereas ANRIL upregulation reactivated this axis. Co-transfection 
experiments showed that simultaneous cyclin D1 suppression and ANRIL overexpression attenuated ANRIL’s 
stimulatory effects on cell cycle progression. RIP analysis confirmed a physical interaction between ANRIL and 
CDKN2A. Furthermore, CDKN2A downregulation inhibited cell proliferation and reversed GSK3β/β-catenin/cyclin D1 
pathway activation mediated by ANRIL upregulation.

Conclusion  ANRIL facilitates Kasumi-1 cell survival by modulating CDKN2A to activate the GSK3β/β-catenin/cyclin 
D1 signaling pathway.
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Introduction
Acute myeloid leukemia (AML) is characterized by 
impaired maturation of myeloid cells in both bone mar-
row and peripheral blood, driven by uncontrolled pro-
liferation of myeloid progenitor cells and inhibited 
differentiation, ultimately disrupting normal hematopoi-
esis [1]. Representing over 50% of leukemia cases, AML 
exhibits a higher incidence of the M2 and M5 subtypes 
[2]. Long non-coding RNAs (lncRNAs), defined as RNA 
molecules longer than 200 nucleotides without a dis-
tinct open reading frame, play multifaceted regulatory 
roles in cancer biology. ANRIL, located on chromosome 
9p21, undergoes intricate regulation mediated by diverse 
mechanisms [3]. In lung, pharyngeal, and hepatocellular 
carcinomas, for example, its expression is modulated by 
oncogenic transcription factors such as c-MYC, SOX2, 
and SP1 [4–6]. In AML, ANRIL is activated via the adi-
ponectin receptor 1 (AdipoR1)/AMP-activated protein 
kinase (AMPK)/sirtuin 1 (SIRT1) glucose metabolism 
axis, which enhances the survival of malignant cells [7]. 
ANRIL promotes proliferation, migration, and invasion 
of AML cells while suppressing apoptosis through its 
regulation of microRNA (miR)-34a, histone deacetylase 
1 (HDAC1), and ASPP2 [8]. The ANRIL locus includes 
the CDKN2A gene, suggesting a regulatory interplay 
influencing AML progression [9], indicating a potential 
regulatory relationship impacting AML development. 
CDKN2A encodes two proteins, p16 and p14, each play-
ing distinct roles in cell cycle regulation. p16 enforces 
G1 phase arrest by inhibiting cyclin-dependent kinases 
and preventing retinoblastoma protein phosphorylation, 
while p14 suppresses HDM2 activity, stabilizing p53 pro-
tein levels [10, 11]. CDKN2A expression has been linked 
to tumor cell proliferation, angiogenesis within the tumor 
microenvironment, and decreased chemotherapy sen-
sitivity [12]. This research paper focuses specifically on 
p16. However, its precise role in AML remains poorly 
understood.

ANRIL expression has been shown to be elevated in 
non-M3 AML patients, particularly in the M2 subtype 
of Kasumi-1 cells compared to normal cells. Building 
upon established stable modulation of ANRIL expres-
sion in Kasumi-1 cells (down and upregulation of ANRIL 
expression), prior findings indicate that ANRIL down-
regulation may suppress cell proliferation and PCNA 
expression, induce apoptosis, and inhibit the activation 
of the PI3K/AKT signaling pathway. Conversely, ANRIL 
upregulation appears to enhance cell proliferation and 
PCNA expression, reduce apoptosis, and activate PI3K/
AKT signaling [13, 14]. These observations suggest that 
ANRIL regulates proliferation and apoptosis in Kasumi-1 
cells through modulation of the PI3K/AKT pathway. Col-
lectively, the evidence indicates that ANRIL functions 
as an oncogenic regulator, modulating proliferation and 

survival of M2-type AML cells through the PI3K/AKT 
pathway. Furthermore, Akt activation influences several 
downstream effectors, such as glycogen synthase kinase 
3 (GSK3), which promotes cell cycle progression and 
increases cell survival [15]. The β-catenin/cyclin D1 axis, 
downstream of GSK-3β, further governs cell proliferation 
and differentiation [15, 16]. Dysregulated cell division 
leading to uncontrolled proliferation remains a hallmark 
of cancer progression [17]. The eukaryotic cell cycle com-
prises G1, S, G2, and M phases, orchestrated by cyclin-
dependent kinases (CDKs) and their regulatory subunits 
[15]. In early G1, CDK4 and CDK6 associate with D-type 
cyclins, resulting in their activation, while CDK2 sub-
sequently interacts with these complexes to drive G1/S 
phase progression [18]. Notably, p39CDK2 functions as 
a meiosis-specific mediator by interacting with SUN1 to 
facilitate telomere clustering [19]. Targeting dysregulated 
cell division and proliferation remains a cornerstone of 
cancer therapy. Palbociclib, a selective cyclin-dependent 
kinase (CDK) 4/6 inhibitor, exhibits significant antitumor 
potential. Beyond its established role in breast cancer 
treatment, it also shows promising efficacy against AML 
[20].

The regulatory function of ANRIL in AML-M2 cell 
proliferation through the GSK-3β/β-catenin/cyclin D1 
pathway remains insufficiently characterized. Expand-
ing on prior work from our group, this study examined 
ANRIL expression in Kasumi-1 cells and its impact on 
malignant biological behavior by modulating the GSK-
3β/β-catenin/cyclin D1 signaling axis via CDKN2A. The 
results provide foundational insights into AML patho-
genesis and inform the development of targeted thera-
peutic strategies.

Results
LncRNA-ANRIL was highly expressed in AML
Analysis of ANRIL expression in bone marrow samples 
from AML patients and normal controls using the TCGA 
and GTEx databases revealed significantly elevated lev-
els in AML patients (Fig.  1A). To validate these obser-
vations, RT-qPCR was performed on peripheral blood 
samples from clinical AML patients and healthy controls, 
confirming a substantial upregulation of ANRIL in AML 
samples (Fig.  1B). Collectively, ANRIL expression was 
markedly higher in AML.

ANRIL affects Kasumi-1 cells cycle progression through the 
GSK3β/β-catenin/cyclin D1 pathway
Based on prior evidence implicating ANRIL in cell pro-
liferation [13, 14], further modulation of ANRIL expres-
sion in Kasumi-1 cells achieved an 80% knockdown 
efficiency and a 10-fold overexpression (Fig.  2A, B). 
This study sought to determine whether ANRIL’s influ-
ence on proliferation was linked to cell cycle regulation. 
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Propidium iodide-based cell cycle analysis revealed that 
ANRIL knockdown led to an accumulation of cells in 
the G0/G1 phase, accompanied by a decrease in the S 
and G2/M phase populations (Fig.  2C, D). Conversely, 
ANRIL overexpression reduced the proportion of cells 
in the G0/G1 phase while increasing their distribution in 
the S and G2/M phases (Fig. 2E, F), supporting ANRIL’s 
regulatory role in cell cycle progression. To investigate 
the mechanism by which ANRIL regulates cell cycle pro-
gression, RT-qPCR and Western blotting were employed 
to quantify the expression levels of CDK2, p-CDK2, 
CDK4, CDK6, and cyclin D1 proteins. ANRIL downreg-
ulation led to a marked decrease in these protein levels 
(Fig. 2G, I, J), whereas its upregulation resulted in a sig-
nificant increase (Fig.  2H, K, L), indicating that ANRIL 
modulates cell cycle progression via CDKs and cyclin 
D1. GSK3β, a downstream effector of the PI3K/AKT 
pathway, is a serine/threonine kinase that interacts with 
key molecular targets, including the cell cycle regula-
tor cyclin D1 and β-catenin [15]. The GSK3β/β-catenin/
cyclin D1 axis is central to the regulation of cell prolifera-
tion and differentiation [15, 16]. To assess the role of this 
signaling pathway in ANRIL-driven cell cycle progres-
sion in Kasumi-1 cells, the expression levels of GSK3β 
and β-catenin were analyzed. RT-qPCR and Western 
blotting demonstrated that ANRIL downregulation sig-
nificantly suppressed GSK3β and β-catenin expression 

(Fig. 2G, I, J), while its upregulation markedly enhanced 
their expression (Fig.  2H, K, L). To confirm ANRIL’s 
effects on GSK3β/β-catenin/cyclin D1 pathway, co-trans-
fection of siRNA cyclin D1 with pcDNA-ANRIL into 
Kasumi-1 cells was performed. Propidium iodide-based 
cell cycle analysis showed that co-transfection of siRNA 
cyclin D1 with pcDNA-ANRIL arrested cells in the G0/
G1 phase, thereby reducing the proportion of cells in 
the S and G2/M phases (Fig. 2M, N). Collectively, these 
results indicate that ANRIL promotes Kasumi-1 cell cycle 
progression through the GSK3β/β-catenin/cyclin D1 
pathway.

Palbociclib reverses the upregulation of ANRIL expression 
in Kasumi-1 cells
To investigate the role of CDK2/4/6 and cyclin D1 in 
Kasumi-1 cells, a replication experiment was performed 
using palbociclib, a small-molecule inhibitor that blocks 
cell cycle progression. It was hypothesized that palboci-
clib could mitigate the adverse effects of ANRIL upreg-
ulation through CDK inhibition. In order to evaluate 
this hypothesis, Kasumi-1 cells were treated with vary-
ing concentrations of palbociclib for 24  h to assess its 
impact on cell proliferation. GraphPad Prism 8 analy-
sis determined an IC50 value of 15 µmol for palbociclib 
in Kasumi-1 cells, which was subsequently used as the 
working concentration (Fig.  3A). ANRIL-expressing 

Fig. 1  Elevated expression of LncRNA-ANRIL in AML. A. ANRIL expression levels in bone marrow samples from AML patients and healthy controls were 
analyzed using TCGA and GTEx databases. B. RT-qPCR quantification of ANRIL mRNA expression in clinical peripheral blood samples. *P < 0.05, **P < 0.01, 
***P < 0.001
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Fig. 2  The ANRIL-regulated GSK3β/β-catenin/cyclin D1 signaling pathway modulated Kasumi-1 cell cycle progression. A, B. Validation of ANRIL down-
regulation and upregulation efficiency. C, D, E, F. Flow cytometry analysis demonstrating cell cycle distribution under ANRIL upregulation and down-
regulation. G, H. RT-qPCR analysis quantifying mRNA levels of CDK2, CDK4, CDK6, cyclin D1, GSK3β, and β-catenin following ANRIL modulation. I, J, K, 
L. Western blotting evaluation of ANRIL expression effects on protein levels of CDK2, p-CDK2, CDK4, CDK6, cyclin D1, GSK3β, and β-catenin. M, N. Flow 
cytometry analysis demonstrating cell cycle distribution following the co-transfection of ANRIL overexpression and cyclin D1 suppression. *P < 0.05, 
**P < 0.01, ***P < 0.001
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Kasumi-1 cells were subjected to cell cycle analysis via 
propidium iodide staining following 24 h and 48 h of pal-
bociclib exposure. Results indicated that ANRIL upreg-
ulation promoted cell cycle progression in untreated 
conditions, while treatment with 15 µmol palbociclib led 
to cell cycle arrest at the G0/G1 phase, accompanied by a 
reduction in S and G2/M phases (Fig. 3B, C, D, E). West-
ern blotting analysis revealed a decrease in CDK4, CDK6, 
and cyclin D1 protein levels after palbociclib treatment 
(Fig. 3F, G). Furthermore, CDK2 protein expression anal-
ysis demonstrated a reduction in both CDK2 and phos-
phorylated CDK2 (p-CDK2) levels, implicating CDK2 
activity as dependent on CDK4/6 signaling (Fig.  3F, G). 
These findings indicate that palbociclib reverses ANRIL 
upregulation-induced cell cycle alterations by inhibiting 
CDK2/4/6 and cyclin D1 activity.

LncRNA-ANRIL positively regulates CDKN2A expression
To elucidate the downstream regulatory network gov-
erned by ANRIL and its mechanistic role in the cell cycle, 
bioinformatics tools, including the RNAINTER website 
(http://rnainter.org/), were utilized to predict potential 

downstream targets interacting with ANRIL (Fig.  4A). 
RT-qPCR and Western blotting analyses subsequently 
assessed CDKN2A expression following ANRIL modu-
lation. The results indicated that ANRIL upregulation 
increased CDKN2A expression, while its downregula-
tion reduced CDKN2A levels (Fig. 4B, C, D, E). Further 
analysis using RT-qPCR examined CDKN2A expres-
sion in peripheral blood samples from healthy individu-
als and AML patients, revealing significantly elevated 
CDKN2A expression in AML patients compared to 
healthy controls (Fig.  4F). UCSC database analysis con-
firmed the upregulation of CDKN2A across 32 tumor 
types, including AML [21], corroborating its heightened 
expression in patients with AML. These findings suggest 
a potential regulatory relationship between ANRIL and 
CDKN2A. To further explore this interaction, the amino 
acid sequence of CDKN2A targeted by ANRIL was iden-
tified using RNAINTER and the PDB database ​(​​​h​t​t​p​s​:​/​/​
w​w​w​.​r​c​s​b​.​o​r​g​/​​​​​) (Fig.  4G). RNA immunoprecipitation 
assays validated a direct physical interaction between 
ANRIL and CDKN2A (Fig. 4H). Collectively, the findings 

Fig. 3  Impact of ANRIL upregulation reversal by Palbociclib on Kasumi-1 cells. A. CCK-8 assay determines the optimal Palbociclib concentration by treat-
ing Kasumi-1 cells with 0, 1, 5, 10, 15, 20, and 25 µmol for 24 h. B, C. Flow cytometry reveals cell cycle distribution following treatment with 15 µmol Pal-
bociclib for 24 h. D, E. Flow cytometry reveals cell cycle distribution following treatment with 15 µmol Palbociclib for 48 h. F, G. Western blotting analysis 
assesses CDK2, p-CDK2, CDK4, CDK6, and cyclin D1 protein expression after palbociclib treatment. ns P>0.05, *P < 0.05, **P < 0.01, ***P < 0.001

 

http://rnainter.org/
https://www.rcsb.org/
https://www.rcsb.org/
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Fig. 4  LncRNA-ANRIL upregulated CDKN2A expression. A. Downstream targets interacting with ANRIL were predicted using the RNAINTER database. B-F. 
RT-qPCR and Western blotting analyses quantify CDKN2A expression levels in Kasumi-1 cells and clinical peripheral blood samples. G. Predicted binding 
site map of ANRIL and CDKN2A. H. RIP assay verifies the direct interaction between ANRIL and CDKN2A in Kasumi-1 cells. *P < 0.05, **P < 0.01, ***P < 0.001
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demonstrate that ANRIL positively regulates CDKN2A 
expression.

Downregulation of CDKN2A expression inhibits cell 
proliferation and cell cycle progression through the GSK 
3β/β-catenin/cyclin D1 pathway and reverses ANRIL 
activation
To determine whether ANRIL regulates cell cycle pro-
gression by modulating CDKN2A expression, Kasumi-1 
cells with stable CDKN2A downregulation were gen-
erated alongside control cells. RT-qPCR analysis con-
firmed an 80% knockdown efficiency (Fig. 5A), validating 
the establishment of CDKN2A-silenced strains. CCK-8 
assays revealed that CDKN2A downregulation signifi-
cantly suppressed Kasumi-1 cell proliferation (Fig.  5B). 
Propidium iodide-based cell cycle analysis showed 

that CDKN2A knockdown arrested cells in the G0/G1 
phase, thereby reducing the proportion of cells in the S 
and G2/M phases (Fig. 5C, D). Western blotting further 
demonstrated decreased expression of CDK2, phos-
phorylated CDK2 (p-CDK2), CDK4, CDK6, cyclin D1, 
GSK3β, and β-catenin upon CDKN2A downregulation 
(Fig.  5E, F), implicating the GSK3β/β-catenin/cyclin D1 
axis in this regulatory mechanism. To confirm ANRIL’s 
effects on CDKN2A, co-transfection of sh-NC-CDKN2A 
or sh-CDKN2A with pcDNA-ANRIL into Kasumi-1 cells 
was performed, achieving a knockdown efficiency of 70% 
as verified by RT-qPCR (Fig.  5G). Subsequent Western 
blotting indicated that co-transfection of sh-CDKN2A 
and pcDNA-ANRIL significantly reduced protein lev-
els of CDK2, p-CDK2, CDK4, CDK6, cyclin D1, GSK3β, 
and β-catenin (Fig.  5H, I). These results suggest that 

Fig. 5  CDKN2A downregulation suppressed cell proliferation and disrupted cell cycle progression via the GSK3β/β-catenin/cyclin D1 signaling pathway. 
A. RT-qPCR analysis confirmed the knockdown efficiency of CDKN2A. B. CCK-8 assay evaluated cell proliferation rates post-knockdown. C, D. Flow cytom-
etry revealed cell cycle alterations following CDKN2A silencing. E, F. Western blotting analysis demonstrated the expression levels of CDK2, p-CDK2, CDK4, 
CDK6, cyclin D1, GSK3β, and β-catenin upon CDKN2A downregulation. G. RT-qPCR validation of CDKN2A knockdown efficiency post co-transfection with 
sh-CDKN2A and pcDNA-ANRIL. H, I. Western blotting assessed CDK2, p-CDK2, CDK4, CDK6, cyclin D1, GSK3β, and β-catenin protein expression following 
co-transfection of sh-CDKN2A and pcDNA-ANRIL. ns P>0.05, *P < 0.05, **P < 0.01, ***P < 0.001
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CDKN2A downregulation suppresses ANRIL-mediated 
malignant proliferation of Kasumi-1 cells. In conclusion, 
reduced CDKN2A expression inhibits Kasumi-1 cell pro-
liferation and cell cycle progression via the GSK3β/β-
catenin/cyclin D1 pathway, effectively counteracting 
ANRIL-mediated pathway activation.

Discussion
AML predominantly presents as a myeloid malignancy, 
characterized by the presence of malignant cells in 
peripheral blood or extramedullary infiltrates [22, 23]. 
AML with partial differentiation (AML-M2), a com-
mon subtype, primarily affects individuals aged 65–75 
and is associated with low complete remission rates and 
poor prognosis. Effective therapeutic target identifica-
tion remains critical for improving patient outcomes in 
AML-M2.

In this study, ANRIL was found to be significantly 
upregulated in AML, promoting disease progression 
by driving cell cycle activation. This effect is medi-
ated through its interaction with CDKN2A, which sub-
sequently activates the GSK3β/β-catenin/cyclin D1 
signaling cascade. These results identify ANRIL as a 
novel oncogenic factor implicated in AML progression.

LncRNAs are increasingly recognized as dysregulated 
factors in various cancers, disrupting downstream gene 
expression and cellular homeostasis, thereby contribut-
ing to malignant transformation [24]. ANRIL is consis-
tently overexpressed in multiple malignancies, including 
colon cancer [25], breast cancer [26], acute lymphoblastic 
leukemia (ALL) [27], and AML [8]. Its expression levels 
have been linked to tumor size, lymph node metasta-
sis (LNM), TNM staging, poor prognosis in AML, and 
pathways associated with glucose metabolism [28, 29, 
7]. Functioning as an oncogene, ANRIL acts as a com-
peting endogenous RNA (ceRNA) by sponging microR-
NAs, leading to the suppression of tumor-suppressive 
microRNAs. For example, ANRIL promotes cellular 
proliferation via the miR-34a/ASPP2, miR-203a/CDK2, 
and miR-141-3p/CCND1/2 pathways in AML, hepato-
cellular carcinoma, and brain cancer, respectively [8, 30, 
31]. Additionally, ANRIL regulates gene expression by 
modulating key signaling pathways. In oral squamous 
cell carcinoma, it enhances cellular proliferation through 
the activation of the TGF-β1/Smad signaling pathway 
[32]. In AML, ANRIL has been identified as a regula-
tor of glucose metabolism by activating AdipoR1 and its 
downstream effectors, AMPK and SIRT1, which influ-
ence cell survival [7]. Evidence indicates that ANRIL con-
tributes to the progression of AML, as its overexpression 
is consistently observed in the peripheral blood of AML 
patients. Notably, downregulation of ANRIL induces G1 
phase cell cycle arrest, inhibiting cell cycle progression, 
while its upregulation promotes cell cycle advancement, 

accelerating transition to subsequent phases. Initial 
research also demonstrated significant overexpression of 
ANRIL in peripheral blood mononuclear cells (PBMCs) 
from AML patients, where ANRIL downregulation may 
suppress cell proliferation and PCNA expression, induce 
apoptosis, ANRIL upregulation appears to enhance cell 
proliferation and PCNA expression, reduce apoptosis. 
These results are consistent with prior studies [13, 14], 
suggesting that ANRIL exerts oncogenic effects in AML 
by modulating cell cycle dynamics and promoting cellu-
lar proliferation.

The precise mechanism through which ANRIL influ-
ences AML progression via cell cycle regulation remains 
to be fully elucidated. To address this, the expression of 
key cell cycle-associated proteins was analyzed. Dys-
regulated cell proliferation in hematologic malignancies 
is frequently driven by aberrant activity of cyclin-depen-
dent kinases (CDKs) and their regulatory proteins. For 
example, hyperactivated cyclin D3-CDK6 suppresses 
glycolysis by inhibiting PFK1 and PKM2 in acute lym-
phoblastic leukemia (T-ALL) cells, thereby promot-
ing proliferation and drug resistance [33]. As most cell 
cycle dysregulation-related diseases occur during the 
G1 phase, the G1/S phase transition is recognized as a 
critical point in cell cycle progression [34]. Regulatory 
proteins such as cyclin D1 and CDKs, including CDK2, 
CDK4, and CDK6, are fundamental for advancing the 
cell cycle from G1 to S phase [35, 36]. To further clarify 
ANRIL’s role, its influence on the expression of CDK2, 
CDK4, CDK6, and cyclin D1 was evaluated. Results 
showed that ANRIL overexpression upregulated CDK2, 
CDK4, CDK6, and cyclin D1, while ANRIL knockdown 
reduced their expression. CDK4 and CDK6 act as initia-
tors of G1 phase progression, while cyclin D1, a subtype 
of cyclin, forms regulatory complexes with CDK4 and 
CDK6. CDK2, active in late G1, also contributes to G1/S 
transition. Together, these CDKs, along with cyclin D1, 
orchestrate progression from the G1 to S phase, indicat-
ing that ANRIL promotes this transition by modulating 
their expression and activity. Furthermore, accumulating 
evidence highlights CDK4/6 as promising therapeutic 
targets in cancer treatment. Palbociclib, a CDK4/6 inhib-
itor, presents a promising therapeutic option for AML. 
Resistance to treatment is frequently observed in AML 
patients, however, palbociclib exhibits efficacy against 
resistant mutations [37]. Its therapeutic potential is 
amplified in combination with other agents. For instance, 
palbociclib combined with dexamethasone has dem-
onstrated effectiveness in treating ALL [38]. Similarly, 
synergistic effects have been reported when palbociclib 
is paired with AURORA kinase inhibitors (danusertib 
and CCT137690), leading to significant inhibition of cell 
growth [39]. In AML, palbociclib synergizes with ATRA 
to promote cell differentiation and suppress AML cell 
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proliferation [40]. Additionally, the combination of pal-
bociclib with venetoclax and azacitidine enhances their 
antitumor activity against AML [20]. Beyond its role as 
a CDK4/6 inhibitor, palbociclib also suppresses CDK2 
activity in AML. Studies reveal that while CDK4/6 
inhibition occurs during the early phase, this leads to a 
downstream reduction in CDK2 expression and kinase 
activity, indicating that CDK2 activation depends on 
prior CDK4/6 activity [41]. In the present study, palbo-
ciclib administration induced G1-phase cell cycle arrest 
by inhibiting CDK2, CDK4, CDK6, and cyclin D1 expres-
sion, effectively halting cell cycle progression. This inhibi-
tion of G1-phase transition ultimately suppressed tumor 
cell proliferation, highlighting palbociclib’s anti-tumor 
efficacy. Consequently, palbociclib has been shown to 
impede cell cycle progression at both the 24 h and 48 h, 
suggesting that it impedes tumor cells from advanc-
ing into the cell cycle during the G1 phase, thereby sup-
pressing their proliferation. CDK2, a cyclin-dependent 
kinase essential for cell cycle progression, exhibited sta-
ble CDK2 and p-CDK2 protein expression, suggesting 
a potential antitumor role for p-CDK2. Palbociclib, an 
effective anti-proliferative agent, has demonstrated the 
capacity to improve tolerance to high-dose cytarabine 
(Ara-C) therapy in elderly AML patients [42]. Optimal 
sequencing and timing of palbociclib administration in 
combination with other agents are critical to enhancing 
its anti-tumor efficacy [43]. However, resistance mecha-
nisms and adverse effects remain significant concerns. 
Elevated CCNE1 and CDKN2D mRNA levels have been 
implicated in resistance to palbociclib [44]. Additionally, 
palbociclib treatment may cause bone marrow suppres-
sion, presenting as neutropenia, anemia, and thrombocy-
topenia, alongside gastrointestinal toxicities [45].

ANRIL modulates cyclin D1 expression, a key regula-
tor of the G1-to-S phase transition in various cancers, 
thereby driving cell cycle progression [46]. GSK-3β also 
regulates cyclin D1 and β-catenin [15]. In AML, suppres-
sion of UCA1 expression inhibits cellular proliferation 
and induces apoptosis by disrupting the GSK3β/β-catenin 
signaling pathway [47]. Previous studies suggest that 
ANRIL influences Kasumi-1 cell proliferation through 
the PI3K/AKT signaling pathway. Since GSK3β func-
tions as a downstream component of the PI3K/AKT axis, 
ANRIL may regulate the Kasumi-1 phenotype via the 
GSK3β/β-catenin pathway [13, 14]. The current findings 
demonstrate that ANRIL activates the GSK3β/β-catenin 
axis, leading to elevated cyclin D1 expression and subse-
quent acceleration of cell cycle progression. Conversely, 
co-transfection that leads to the ANRIL overexpression 
and cyclin D1 suppressionmay counteract the promot-
ing influence of increased ANRIL levels on cell cycle 
progression. These results indicate that ANRIL promotes 

cell cycle progression through activation of the GSK3β/β-
catenin/cyclin D1 pathway.

LncRNAs regulate cell proliferation and survival by 
modulating the expression of genes encoding key cell 
cycle proteins, such as cyclins, cyclin-dependent kinases 
(CDKs), and CDK inhibitors [48]. CDKN2A, located at 
the same locus as ANRIL, encodes the cell cycle regula-
tory protein p16, implicating ANRIL in the regulation of 
cell proliferation and apoptosis [10]. The CDKN2A gene 
frequently undergoes inactivation or mutation in various 
cancers, including melanoma, pancreatic, and liver can-
cers, with such alterations being associated with tumor 
staging in hepatocellular carcinoma [49–51]. Addition-
ally, CDKN2A has been shown to be co-expressed with 
CDK4, CDK6, and cyclin D1 [21]. In the current study, 
CDKN2A expression was elevated in the peripheral 
blood of AML patients, and ANRIL was identified as a 
positive regulator of CDKN2A expression. Downregu-
lation of CDKN2A suppressed cell proliferation and 
cell cycle progression, highlighting its role in ANRIL-
mediated regulation of Kasumi-1 cell growth. Further 
analysis demonstrated that CDKN2A downregulation 
can inhibit activation of the GSK3β/β-catenin/cyclin D1 
signaling pathway. In Kasumi-1 cell lines overexpressing 
ANRIL, silencing CDKN2A reversed ANRIL-induced 
changes in cell cycle-related proteins and disrupted the 
GSK3β/β-catenin/cyclin D1 pathway. These results sug-
gest that ANRIL regulates cell cycle progression through 
CDKN2A. CDKN2A encodes two proteins, p16 and p14, 
which are central to the regulation of cell proliferation 
[10, 11]. Notably, p16 shows increased expression in cer-
vical and breast cancers [52, 53]. Studies have revealed 
a positive correlation between ANRIL expression and 
the p16-CDKN2A gene cluster in most tumors [54]. 
Upregulation of p16 may result directly from alterations 
in its interaction with pRb or indirectly via the p53 sig-
naling pathway [55, 56]. Analysis of 713 cell lines and 
tissues expressing ANRIL showed significantly higher 
p16 mRNA levels compared to 298 cell lines and tis-
sues lacking ANRIL expression. Furthermore, ANRIL 
transcriptional activity was more pronounced in p16 
unmethylated cell lines than in p16 methylated ones, sug-
gesting that p16 DNA methylation may inhibit ANRIL 
transcription [57]. Nonetheless, limitations remain. 
First, the exact mechanism by which ANRIL engages the 
GSK3β/β-catenin/cyclin D1 pathway requires further 
elucidation. Second, The sustained impact of palbociclib 
on the GSK 3β/β-catenin/cyclin D1 signaling pathway. 
Finally, the oncogenic role of ANRIL has been confirmed 
only in vitro, highlighting the need for in vivo validation 
in future research.

This study comprehensively investigates the regula-
tory role of ANRIL in cell cycle progression via the 
GSK-3β/β-catenin/cyclin D1 pathway, focusing on four 
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key mechanisms. First, suppression of ANRIL expres-
sion inhibits the GSK-3β/β-catenin pathway, lead-
ing to reduced expression of cell cycle-related proteins 
CDK2/4/6 and cyclin D1, which promotes apoptosis in 
cancer cells. Second, elevated ANRIL expression acti-
vates the GSK-3β/β-catenin pathway, consequently 
upregulating CDK2/4/6 and cyclin D1, thereby driving 
cancer cell proliferation. Third, ANRIL directly interacts 
with CDKN2A, and the downregulation of CDKN2A fur-
ther suppresses the GSK-3β/β-catenin pathway, reducing 
CDK2/4/6 and cyclin D1 levels and enhancing apoptosis. 
Finally, palbociclib effectively inhibits cancer cell cycle 

progression by targeting CDK2/4/6 and cyclin D1 expres-
sion (Fig. 6).

Conclusion
ANRIL was found to be significantly upregulated in 
AML, with its expression influencing cell cycle progres-
sion. Suppression of ANRIL expression resulted in cell 
cycle arrest, whereas its upregulation promoted cell cycle 
progression, potentially through the positive regulation 
of CDKN2A and activation of the PI3K/AKT signaling 
pathway (Fig.  7). This evidence highlights ANRIL as a 
promising molecular target for AML-M2 therapy.

Fig. 7  Schematic representation depicting ANRIL-mediated regulation of cell cycle progression in Kasumi-1 cells

 

Fig. 6  Study Design of ANRIL’s Promotion of Malignant Progression in Kasumi-1 Cells
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Materials and methods
Reagents and antibodies
The Kasumi-1 cell line was procured from the Cell Bank 
of the Chinese Academy of Sciences. RPMI 1640 medium 
was supplied by Gibco (USA), and serum was obtained 
from Biological Industries (Israel). PCR primers were 
purchased from Shanghai Biotechnology, while RNA 
extraction reagents were provided by Thermo Fisher 
Scientific (USA). Reverse transcription and RT-qPCR 
reagents were sourced from TaKaRa (Japan). CCK-8 assay 
kits were acquired from Dalian Meilun Biotechnology, 
and flow cytometry reagents for cell cycle analysis were 
obtained from Hangzhou Lianke Biotechnology. Primary 
antibodies against GAPDH, cyclin D1, β-catenin, and 
CDKN2A were supplied by Wuhan Sanying Biotechnol-
ogy, while antibodies targeting CDK2, CDK4, CDK6, and 
GSK3β were provided by Shenyang Wanlei Biotechnol-
ogy. ECL chemiluminescence reagents were purchased 
from Millipore (USA), and the CDKN2A gene plasmid 
DNA was obtained from Guangzhou Aiji Biotechnology. 
The PCR instrument used in this study was manufac-
tured by Roche (Switzerland).

Clinical samples
The study was approved by the Medical Ethics Commit-
tee of the Affiliated Hospital of Guizhou Medical Univer-
sity (approval number: 2016(65)), and informed consent 
was obtained from all participating patients. Periph-
eral blood samples were obtained from 54 patients with 
confirmed AML, with diagnosis established using the 
French-American-British (FAB) classification system. 
A control cohort consisted of peripheral blood samples 
collected from 40 healthy individuals undergoing routine 
medical examinations.

Cell culture
Kasumi-1 cells were cultured in RPMI-1640 medium 
supplemented with 10% fetal bovine serum (FBS, Gibco) 
under controlled humidity at 37  °C with 5% CO₂. The 
medium was refreshed, and cells were passaged every 
two days. The study design incorporated the following 
experimental groups: ANRIL knockdown (sh-ANRIL) 
and its corresponding control (sh-NC), ANRIL overex-
pression (pcDNA-ANRIL) and its control (pcDNA-NC), 
a drug-treated group combining ANRIL overexpres-
sion with Pabociclib (pcDNA-ANRIL + Pabociclib) and 
its control (pcDNA-NC + Pabociclib), CDKN2A knock-
down (sh-CDKN2A) and its control (sh-NC-CDKN2A), 
co-transfection of ANRIL overexpression with cyclin D1 
siRNA (pcDNA-ANRIL + si-cyclin D1), and co-trans-
fection of ANRIL overexpression with CDKN2A knock-
down (pcDNA-ANRIL + sh-CDKN2A).

RNA extraction and RT-qPCR
The total RNA was extracted using Trizol reagent and 
subsequently reverse-transcribed into cDNA with the 
TaKaRa kit. Quantitative analysis of target gene expres-
sion was conducted through SYBR-based RT-qPCR, with 
ACTB serving as the internal control. Gene expression 
levels were calculated using the 2−∆∆CT method. The 
primer sequences used for RT-qPCR were as follows: 
ACTB (F: 5′-​G​C​G​T​G​A​C​A​T​T​A​A​G​G​A​G​A​A​G​C-3′, R: 5′-​
C​C​A​C​G​T​C​A​C​A​C​T​T​C​A​T​G​A​T​G​G-3′) and ANRIL (F: 5′-​
A​T​A​A​G​C​C​T​C​A​T​T​C​T​G​A​T​T​C​A​A​C​A​G​C-3′, R: 5′-​A​G​C​
A​G​T​A​C​T​G​A​C​T​C​G​G​G​A​A​A​G-3′).

Cell proliferation assay
Transfected Kasumi-1 cells (2 × 10^4 cells/well) were 
seeded into 96-well culture plates. To assess cell prolif-
eration, 10 µL of CCK-8 reagent was added per well, fol-
lowed by a 2-hour incubation. Absorbance at 450 nm was 
measured using an enzyme-linked immunosorbent assay 
(ELISA) reader at 24, 48, and 72 h. After each time point, 
an additional 2-hour incubation with CCK-8 reagent was 
performed. The resulting absorbance data were used to 
generate a proliferation curve.

Flow cytometry analysis
Cellular groups were harvested and centrifuged before 
fixation in 70% pre-cooled ethanol, followed by over-
night incubation at 4 °C in an ice bath. The next day, the 
samples were washed with pre-cooled PBS, and the cell 
pellets were resuspended in RNase A. Propidium iodide 
staining was performed for 30 min under dark conditions. 
Cell cycle analysis was carried out using flow cytometry, 
with data processed via NovoExpress software.

Western blotting
Cells from each group were lysed using a RIPA: PMSF 
mixture at a 100:1 ratio, followed by high-speed cen-
trifugation at 12,000 × g for 20 min at 4 °C to obtain the 
supernatant. The proteins were denatured by heating in 
a metal bath, and their concentrations were quantified 
using the BCA Protein Detection Kit. Equal amounts of 
protein were separated via 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) at 120 V 
and subsequently transferred onto PVDF membranes 
under a current of 260 mA for 90 min. The membranes 
were blocked with skimmed milk for 2  h at room tem-
perature, incubated overnight at 4  °C with the primary 
antibody, and then probed with an enzyme-conjugated 
secondary antibody for 1 h. Protein signals were visual-
ized using ECL chemiluminescence, enabling the detec-
tion of proteins separated during electrophoresis.
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RNA immunoprecipitation (RIP) assay
Kasumi-1 cells were harvested for nucleoprotein extrac-
tion, which was resuspended in RIP buffer and divided 
into three groups for co-precipitation with IgG and 
CDKN2A antibodies. Supernatants obtained through 
centrifugation were incubated at 4 °C for two hours with 
IgG and human anti-CDKN2A antibodies. Protein A was 
subsequently added, followed by another hour of incu-
bation at 4  °C. After centrifugation, the samples were 
washed three times with RIP buffer and once with PBS 
before bead resuspension in Trizol. ANRIL and CDKN2A 
expression levels were then measured via RT-qPCR, and 
their relative abundances were quantified.

Plasmid construction and transfection
The plasmid was constructed by Guangzhou Aiji Bio-
technology, and experiments were conducted using the 
CDKN2A target sequence (​C​C​G​G​G​C​T​C​T​C​T​G​A​G​A​A​
A​C​C​T​C​G​G​G​A​A​A​C​T​C​G​A​G​T​T​T​C​C​C​G​A​G​G​T​T​T​C​T​C​
A​G​A​G​C​T​T​T​T​T​T​T​G​A​A​T​T), which corresponds to the 
vector pLKO.1-U6-EF1a-copGFP-T2A-puro. Lentivi-
ral expression vectors, including psPAX2 and pMD.2G, 
along with control plasmids, were transfected into 293T 
cells to produce lentiviral particles. The resulting viral 
supernatants were collected and used to infect Kasumi-1 
cells in the presence of 5 µg/mL polybrene for 48 h. Infec-
tions were evaluated at 24, 48, and 72  h. Stable trans-
fectants were subsequently generated through selection 
with 5 µg/mL puromycin.

Statistical analysis
SPSS version 20.0, GraphPad Prism version 8, and Fig-
draw were used for statistical analysis and visualization. 
Each experiment was independently repeated three 
times. Data distribution was assessed using normality 
and lognormality tests. For two-group comparisons, the 
unpaired two-tailed Student’s t-test was applied to data 
with a normal distribution, while the Mann–Whitney 
U test was employed for non-normally distributed data. 
Quantitative analysis of Western blotting results was 
conducted using ImageJ software. Statistical significance 
was defined as a p-value < 0.05. All experimental proce-
dures adhered to the relevant guidelines and regulations.
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