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Background
Multiple myeloma (MM) is a complex hematological 
malignancy classified as a monoclonal gammopathy, with 
an estimated global incidence of 160,000 new cases per 
year [1, 2]. It is characterized by the uncontrolled pro-
liferation of malignant plasma cells (PCs) and excessive 
secretion of monoclonal immunoglobulin (Ig) [2]. For 
MM diagnosis, two criteria are required: the presence 
of 10% or more clonal PCs in the bone marrow (BM) or 
a biopsy-proven plasmacytoma. The second criterion 
is the presence of at least one myeloma-defining events, 
which include so-called CRAB symptoms (hypercalce-
mia, renal insufficiency, anemia, and bone lesions) and 
three specific biomarkers: the presence of > 60% clonal 
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Abstract
Background  Multiple myeloma (MM) represents the second most common hematological malignancy characterized 
by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality 
and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients 
relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when 
relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest 
that microRNAs could be good markers of relapse.

Results  Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM 
patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed 
subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with 
different times to relapse. At the same time, differences in the mass spectra between groups were identified using 
matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine 
learning.

Conclusion  Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective 
preliminary screening technique to supplement current diagnostics.
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PCs in BM, serum free light chain (FLC) ratio ≥ 100 and 
the detection of more than one focal lesion on MRI [3, 4]. 
MM treatment options have improved noticeably in the 
past few decades. New therapies, including monoclonal 
and bispecific antibodies and CAR-T cell therapy, have 
extended the overall survival of patients and improved 
their quality of life [5–7].

Nonetheless, most MM patients relapse [8]. In MM, 
relapse is defined as ≥ 25% increase from the lowest 
confirmed serum and/or urine monoclonal Ig value. In 
unmeasurable cases, it is defined by an increase in BM 
PC mass of ≥ 10% regardless of baseline. Additional cri-
teria may include a new lesion, an increase in the number 
of bone lesions, etc [9–11]. Relapse poses a clinical chal-
lenge due to MM heterogeneity, new mutations, and drug 
resistance, making it difficult to determine its timing and 
severity [12, 13]. Accurate and minimally invasive bio-
markers that enable more frequent monitoring of disease 
become increasingly important.

MicroRNAs (miRNAs), short non-coding RNAs 
involved in post-transcriptional gene regulation, play 
essential roles in various physiological processes, includ-
ing proliferation, apoptosis, and differentiation, all of 
which are dysregulated in MM [13, 14]. MiRNA dysregu-
lation was implicated in MM pathogenesis, disease pro-
gression, and drug resistance [15–17]. MiRNAs are also 
actively released from cells into body fluids as so-called 
circulating miRNAs [18, 19]. Unlike other RNA species, 
circulating miRNAs are stable and resistant to enzymatic 
degradation; thus, they can be used as biomarkers [20]. 
Circulating miRNAs from PB could represent a less inva-
sive approach than BM biopsy.

Matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (MALDI-TOF MS) allows 
high-throughput, sensitive detection of molecular pat-
terns [21–23]. This method has been utilized in a com-
bined approach with machine learning (ML) algorithms 
to study monoclonal gammopathies, revealing molecular 
signatures relevant to diagnosis, prognosis, and treat-
ment response [24–29].

In this study, we investigated biomarkers for early 
relapse in MM. While small RNA seq showed the best 
results, using MALDI-TOF MS and clinical data analyzed 
by predictive ML models provides economically sound 
and accurate alternatives for early relapse detection.

Results
Small RNA sequencing of microRNAs
Small RNA seq was performed using PB serum samples 
of 8 MM patients from group A, 8 MM patients from 
group B, and 8 MM patients from group C. Two samples 
(one from group A and one from group B) were excluded 
due to a small number of reads. Sequencing data analy-
sis identified 748 miRNAs. Further analysis showed 360 

miRNAs with more than 1 read per million in at least 7 
samples.

In total, 8 different miRNAs (miR-16-2-3p, miR-
148a-3p, miR-185-5p, miR-335-3p, miR-485-3p, miR-
598-3p, miR-4433b-5p, miR-5010-5p) were dysregulated 
among all three analyzed subgroups (P < 0.1). However, 
the groups did not cluster properly (data not shown). 
When comparing groups A vs. B, and groups B vs. C, 
no statistically significant miRNAs were found (data not 
shown).

The largest differences were found between group A 
and group C: 24 miRNAs were identified as differentially 
expressed with P < 0.1 (Fig. 1); out of these, miR-16-2-3p 
and miR-598-3p were the most significantly differentially 
expressed (P < 0.05). Three miRNAs (miR-16-2-3p, miR-
92b-3p, miR-598-3p) were chosen for validation in the 
second step of the study based on the corresponding log-
fold change of expression (log-FC) and P-value (Table 1).

Consecutively, the study employed four ML algo-
rithms to predict early relapse in MM patients, namely: 
PLS-DA (partial least squares discriminant analysis), 
k-NN (k-nearest neighbors), RF (random forest), and 
ANN (artificial neural network). These analyses were 
performed using 8 most dysregulated miRNAs between 
all 3 groups, 24 mostly dysregulated miRNAs between 
groups A and C, and 360 miRNAs with more than 1 read 
per million in at least 7 samples. Evaluation of the models 
was based on their overall accuracy in predicting the out-
come. The best performance was observed when using 
24 miRNAs dysregulated between groups A and C. The 
PLS-DA and RF algorithms exhibited the best perfor-
mance when comparing groups A and C: PLS-DA: 97.7% 
(93.3–100%), RF: 92.8% (88.4–97.3%) (Fig. 2) as well as all 
3 groups: PLS-DA: 96.8% (94.1–99.5%), RF: 84.8% (79.7–
89.9%) (Fig. 3).

Validation of microRNAs dysregulated among the 
diagnostic subgroups
Three miRNAs, which were the most dysregulated 
between group A and group C, were selected for the 
validation phase of the study. Based on the results of the 
Mann-Whitney test, significant differences in expres-
sion were observed in the case of miR-598-3p (P = 0.0145, 
Fig.  4). Table  2 summarizes the statistical results of the 
normalized expression values. The expression levels of 
miR-16-2-3p and miR-92b-3p did not differ between 
the analyzed subgroups (P = 0.2268 and P = 0.7108, 
respectively).

Based on the results of ROC analysis, miR-598-3p 
(AUC = 0.8636, sensitivity 64%, specificity 100%, cut off: 
0.03724; Fig. 5) distinguished groups A and C with high 
specificity.

Correlation analysis was performed between miRNA 
levels and quantitative clinical characteristics of MM 
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patients. Elevated levels of β2-microglobulin were 
observed in patients with upregulation of miR-16-2-3p 
and miR-92b-3p. Other correlation analyses did not show 
any significant results (Supplementary Table 4, Addi-
tional file 1).

MALDI-TOF MS
MALDI-TOF MS analysis was performed on a total of 
29 PB serum samples, including 10 samples from group 
A and 19 samples from group BC (combined groups B 
and C). The mass spectral data were processed using the 
OPLS-DA method to evaluate whether molecular pro-
files could distinguish between patient groups based on 
relapse timing. The optimal number of components to 

Table 1  Three most significantly dysregulated miRNAs identified 
in the exploration phase of the study
miRNA logFC

A vs. C
Adjusted
P-value

miR-16-2-3p 4.429 0.045
miR-92b-3p 5.231 0.067
miR-598-3p 4.723 0.003

Fig. 2  Comparison of 24 differentially expressed miRNAs based on accu-
racy. Comparing group A (relapse within 6 months) vs. group C (relapse 
after more than 5 years). The boxes represent the interquartile accuracy 
range, with black dots indicating the mean value. Whiskers show the ac-
curacy range excluding outliers, which are plotted as blue dots

 

Fig. 1  Clustergram and heatmap visualizing 24 miRNAs differentially expressed among 16 multiple myeloma patients, including 7 from group A (relapse 
within 6 months) (blue) and 8 from group C (relapse after more than 5 years) (red) (adjusted P < 0.1) in the exploration phase of the study
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be input to OPLS-DA was determined based on the R2Y 
and Q2Y values to prevent the overfitting of the model. 
Consecutively, four ML algorithms (PLS-DA, k-NN, 
RF, and ANN) were applied to the mass spectral data to 
verify whether the classification of the selected sample 
groups can be predicted solely based on computationally 
processed data (Fig. 6).

To improve the model predictive value, clinical param-
eters were added to the dataset; the analyses were per-
formed again, resulting in better-separated clusters 
and higher accuracy with which the two groups can 
be distinguished (Fig.  7). The PLS-DA and RF algo-
rithms exhibited the best performance when comparing 
MALDI data alone: PLS-DA: 62.5% (57.7–67.4%), RF: 
66.3% (63.2–69.5%), as well as when clinical parameters 
were employed: PLS-DA: 74.1% (69.1–79.0%), RF: 65.6% 
(62.6–68.6%).

Discussion
MM is a heterogeneous plasma cell dyscrasia, account-
ing for 1.8% of all cancer cases. Nearly all MM patients 
secrete monoclonal immunoglobulin, which is produced 
by malignant plasma cells [30, 31]. Over the last two 
decades, the median overall survival of MM patients has 
improved substantially [32, 33] due to advanced treat-
ment options. Despite these advances, MM remains a 
hard-to-treat disease; most patients eventually relapse [5, 
34, 35]. MM relapse is defined as the recurrence of the 
disease following prior treatment [11]. Due to MM het-
erogeneity, patients relapse from several months to years 
[12, 36]. Predicting the exact timing of relapse remains 
challenging, yet a growing body of research suggests 
that miRNAs have prognostic value, potentially aiding in 
relapse prediction [12, 34, 36].

Within the scope of this study, patients were classi-
fied into three groups (A, B, and C) based on their time 

Table 2  RT-qPCR validation of miRNAs dysregulated between 
groups a and C
miRNA A

Median
(min-max)

C
Median
(min-max)

P-value

miR-16-2-3p 0.119 (0.020–0.408) 0.055 (0.022–0.25) 0.2268
miR-92b-3p 17.269 (5.161–95.547) 19.450 (6.284–73.665) 0.7108
miR-598-3p 0.005 (0.001–0.021) 0.004 (0.000–0.008) 0.0145
Group A, relapse within 6 months; group C, relapse after more than 5 years

Fig. 4  Significantly dysregulated miR-598-3p between group A (relapse 
within 6 months) (blue) and C (relapse after more than 5 years) (red) 
(P = 0.0145)

 

Fig. 3  Comparison of 24 differentially expressed miRNAs based on accu-
racy. Comparing group A (relapse within 6 months) vs. group B (relapse 
between 12 to 30 months) vs. group C (relapse after more than 5 years). 
The boxes represent the interquartile accuracy range, with black dots indi-
cating the mean value. Whiskers show the accuracy range excluding outli-
ers, which are plotted as blue dots
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to relapse. The first objective of this study was to iden-
tify differentially expressed miRNAs in PB serum among 
the three MM patient groups at the time of diagnosis 
using small RNA seq.  Initial analysis of sequencing data 
compared group A vs. group B and group B vs. group C, 
revealing no statistical differences. An analysis comparing 

the most distant groups, A and C, revealed significant 
miRNA expression differences. In this comparison, 24 
miRNAs were identified as differentially expressed with 
an adjusted P < 0.1; 2 miRNAs (miR-16-2-3p and miR-
598-3p) showed an adjusted P < 0.05.

Three miRNAs (miR-16-2-3p, miR-598-3p, and miR-
92b-3p), exhibited increased expression in group A 
compared to group C, making these two groups ideal 
candidates for further validation. These three miR-
NAs were selected for validation, confirming significant 
expression differences between groups A and C only for 
miR-598-3p (P = 0.0145).

The gene for miR-598-3p is located at 8p23.1. MiR-
598-3p regulates gene expression associated with cel-
lular communication, metabolic processes, and nervous 
system development [37]. Dysregulated expression of 
this miRNA is implicated in several diseases, including 
cancers; miR-598-3p is involved in tumor cell prolifera-
tion, apoptosis, and invasion [38]. This miRNA is overex-
pressed in colorectal cancer but downregulated in breast 
cancer or acute T lymphoblastic leukemia (T-ALL) [37, 
39–41]. In T-ALL, miR-598-3p was shown to target the 
DEPTOR gene (encoding the mTOR-interacting protein 
with the DEP domain). Previous experiments highlighted 
the diverse functions of DEPTOR in cancer development. 
In T-ALL patients, DEPTOR promotes proliferation [41, 
42]. In MM, DEPTOR was also differentially expressed; 
MM patients with low DEPTOR expression had a signifi-
cantly shorter progression-free survival [43]. These stud-
ies suggest that the elevated expression of miR-598-3p, 
observed in group A in this study, reduces DEPTOR 

Fig. 6  OPLS-DA score plot (left) of analysis of mass spectral data from serum samples. Comparison of established classifiers based on accuracy (right). 
The boxes represent the interquartile accuracy range, with black dots indicating the mean value. Whiskers show the accuracy range excluding outliers, 
which are plotted as blue dots

 

Fig. 5  ROC analysis of miR-598-3p (AUC = 0.8636, sensitivity 64%, specific-
ity 100%, cut-off: 0.03724)
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protein levels, potentially leading to an earlier relapse in 
MM patients.

The miR-15b/16 − 2 cluster is located on chromosome 
3, specifically within the SMC4 gene, which encodes 
structural maintenance of chromosomes 4 protein, reg-
ulating chromosome stability, assembly, and segrega-
tion through a complex with SMC2 [44]. The role of the 
miR-15b/16 − 2 cluster on chromosome 3 is not as well 
understood as the miR-15a/16 − 1 cluster, which is well-
characterized in MM. Several studies suggest that the 
miR-15b/16 − 2 cluster plays a key role in cellular prolif-
eration and apoptosis [44, 45]. In osteoporosis studies, 
miR-16-2-3p was found to target and regulate WNT5A 
expression. Protein Wnt-5a is part of the Wnt pathway, 
essential for bone formation and osteoblast differentia-
tion. Studies demonstrated that increased miR-16-2-3p 
levels block the Wnt pathway through Wnt-5a, result-
ing in inhibited osteoblast differentiation, which has also 
been highlighted in MM studies [46–48]. Several studies 
have investigated this miRNA in MM patients. A study 
by Robak et al. on circulating serum miRNAs in MM 
found elevated miR-16-2-3p expression in bortezomib-
resistant patients compared to bortezomib-sensitive 
patients [49]. Another MM study associated high miR-
16-2-3p expression with poor overall survival [50]. These 
studies indicate that excessive miR-16-2-3p expression in 
MM correlates with disease aggressiveness, aligning with 
our findings, as miR-16-2-3p expression was elevated in 
group A. Dysregulation of this miRNA may be predictive 
for MM relapse.

MiR-92b-3p was investigated in different solid tumors 
and has shown context-dependent roles. It acts as a 

tumor-suppressive miRNA in pancreatic cancer but has 
an oncogenic role in colorectal, renal, breast, and pros-
tate cancer. Its increased expression promotes cell pro-
liferation, migration, invasion, and resistance through 
target gene suppression [51–56]. Increased miR-92b-3p 
expression predicted poor prognosis in prostate can-
cer patients, who exhibited shorter overall survival [56]. 
Breast cancer patients with high miR-92b-3p expression 
also showed significantly shorter relapse-free survival 
and overall survival [51, 54]. Since miR-92b-3p showed 
increased levels in group A in this study, it appears to be 
an oncogenic miRNA in MM and could be suitable for 
predicting disease relapse. Further research is needed to 
understand its specific role in MM.

ML algorithms have shown immense potential in 
enhancing the diagnosis and prognosis in MM [28, 29, 
57–60]. In this study, ML models, such as RF and PLS-
DA, effectively differentiated patients based on miRNA 
profiles, demonstrating their capability to uncover subtle 
patterns within complex datasets. By leveraging these 
algorithms, we achieved higher accuracy in distinguish-
ing between groups A and BC. This underscores the abil-
ity of ML to augment traditional bioinformatics tools by 
incorporating high-dimensional data, improving predic-
tive modeling.

The next objective of this study was to compare the 
mass spectra of two MM patient groups with different 
relapse intervals using MALDI-TOF MS; it has been used 
to detect peptides and proteins in PB serum in various 
cancers [61–63]. Several studies were conducted in MM, 
where MS identified potential diagnostic and classifica-
tion markers [28, 29, 64–66]. For instance, our previous 

Fig. 7  OPLS-DA score plot (left) of analysis of mass spectral data combined with clinical parameters from serum samples. Comparison of established 
classifiers based on accuracy (right). The boxes represent the interquartile accuracy range, with black dots indicating the mean value. Whiskers show the 
accuracy range excluding outliers, which are plotted as blue dots

 



Page 7 of 11Růžičková et al. Cell Division            (2025) 20:4 

study showed that healthy donors were differentiated 
from MM patients using MALDI-TOF MS combined 
with artificial neural networks [24].

In this study, the OPLS-DA method assessed the data 
discriminatory potential, demonstrating partial separa-
tion between the groups. Four ML algorithms, namely 
PLS-DA, k-NN, RF, and ANN, were applied to the mass 
spectral data to enhance classification performance. 
Upon integration of clinical parameters into the dataset, 
significant improvements were observed in both cluster-
ing and classification accuracy. Based on the results of 
our study, which point to differences in the mass spectra 
of patients with varying relapse times in MM, comparing 
mass spectra and clinical parameters using MALDI-TOF 
MS could potentially be suitable for predicting disease 
relapse.

Compared to standard diagnostic tools like monoclo-
nal protein quantification, BM biopsy or imaging, our 
approach uses serum-based biomarkers, enabling more 
frequent and minimally invasive monitoring. MALDI-
TOF MS offers rapid and scalable molecular profil-
ing, while miRNA analysis provides high specificity for 
early relapse prediction. Together, these methods could 
complement current diagnostics, addressing limitations 
in sensitivity and invasiveness. Analysis of circulating 
molecular species has become increasingly important in 
recent years. Our study demonstrates that while small 
RNA seq achieves the highest accuracy in distinguishing 
between groups of MM patients with different relapse 
timing, its routine clinical application is hindered by 
higher time requirements, operational costs, and tech-
nical challenges compared to MALDI-TOF MS analy-
sis. Integrating MALDI-TOF MS analysis with clinical 
data emerges as a more feasible and efficient approach 
for relapse prediction, balancing accuracy with usability 
and cost-effectiveness. Nonetheless, the sample sizes for 
miRNA profiling and MALDI-TOF MS analyses were 
limited, necessitating caution in interpreting the results. 
Larger patient cohorts are critical for validating the iden-
tified biomarkers and ensuring their generalizability.

Conclusions
This study investigates biomarkers for predicting early 
relapse in MM by analyzing circulating miRNAs and 
small molecular species in peripheral blood serum. Small 
RNA seq and subsequent RT-qPCR validation identi-
fied miR-598-3p as a specific biomarker with elevated 
expression in early relapse patients with high specific-
ity. While small RNA sequencing offers high specificity 
in distinguishing MM relapse groups, its clinical adop-
tion is limited due to high costs, technical demands, and 
processing time. MALDI-TOF MS, being fast and cost-
effective, serves as a viable alternative for routine use. 
Integrating clinical parameters with MALDI-TOF MS 

spectra provides a scalable approach for rapid detection, 
with partial least squares discriminant analysis (PLS-DA) 
achieving an accuracy of 71.4%. These findings highlight 
the potential of liquid biopsies for early relapse predic-
tion, with multidimensional datasets further enhancing 
their utility and possibly enabling timely intervention. 
However, the relatively small sample size used for both 
miRNA and MALDI-TOF MS analyses highlights the 
need for further investigation on larger patient cohorts to 
validate these findings.

Materials and methods
Patients’ characteristics
This study included 74 MM patients diagnosed at the 
University Hospital Brno, Czech Republic, between 
2006 and 2021. The patients were categorized into 
three groups (A, B, C) based on the time of relapse after 
diagnosis: group A (relapse within 6 months), group 
B (relapse between 12 and 30 months), and group C 
(relapse after more than 5 years). MM patients were 
classified into three groups based on clinically observed 
relapse patterns. Group A (relapse within 6 months) 
reflects aggressive disease. Group C (relapse after more 
than 5 years) represents indolent MM with slower pro-
gression, while Group B (relapse between 12 and 30 
months) encompasses an intermediate phenotype. These 
thresholds allowed the investigation of distinct biologi-
cal mechanisms underlying relapse timing. MM samples 
analyzed in this study were collected at MM diagno-
sis. All MM patients included in this study provided 
informed consent, and the study was approved by the 
hospital’s Ethics Committee in compliance with the Dec-
laration of Helsinki. Clinical data were obtained from the 
Registry of Monoclonal Gammopathies (RMG) and are 
summarized in Supplementary Table 1, Additional file 1. 
Patients received therapies per standard guidelines, with 
bortezomib-based regimens being predominant. Detailed 
therapy specifications are included in Supplementary 
Table 2, Additional file 1.

Sample preparation
PB and BM samples were collected from MM patients 
at diagnosis. PB serum was collected as described pre-
viously [67, 68]. CD138 + PCs were isolated from BM as 
described previously [16].

RNA isolation from peripheral blood serum
After thawing, PB serum samples were prepared as 
described before; total RNA enriched for small RNAs, 
including miRNAs, was isolated from 200 µl of each PB 
serum sample [67, 68].
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Small RNA sequencing
Small RNA seq was performed on 8 samples from each 
patient group (A, B, and C) to profile miRNA expres-
sion. QIAseq miRNA Library Kit (Qiagen, Germany) 
was used to prepare cDNA libraries, library concentra-
tion was then assessed using Qubit dsDNA HS Assay 
(Thermo Fisher Scientific, USA) followed by electropho-
resis measurement of their size range with High Sensitiv-
ity D1000 ScreenTape Assay for Agilent 2200 TapeStation 
(both Agilent Technologies, USA). Equimolar amounts of 
cDNA libraries were pooled at a final concentration of 4 
nmol·l− 1. Sequencing was performed using the NextSeq 
500 Reagent kit v2 (Illumina, USA).

RT-qPCR validation
To validate small RNA seq results, 7 MM samples from 
group A and 13 MM samples from group C were ana-
lyzed by RT-qPCR. Reverse transcription was performed 
with the TaqMan Advanced miRNA cDNA Synthesis Kit 
(Applied Biosystems, USA) using 2 µL of RNA accord-
ing to the manufacturer’s instructions. RT-qPCR was 
performed using TaqMan Advanced miRNA Assays 
(Applied Biosystems, USA) as previously described [16]. 
The miRNA assay IDs are listed in Supplementary Table 
3, Additional file 1.

Bioinformatics and statistical analyses
The miRge3 sequencing analysis pipeline, which supports 
Unique Molecular Identifiers (UMI), was applied for data 
processing [69]. MirBase database was used for miRNA 
read alignment. Count-based miRNA expression data 
were further analyzed by R/Bioconductor libraries [70]. 
Only miRNAs with at least 1 read per million in at least 
7 samples were analyzed. The read counts were pre-nor-
malized by adding normalization factors within edgeR 
library [71, 72] and further between-sample normalized 
by the voom function in LIMMA library [73]. After the 
normalized expression levels were determined, the differ-
entially expressed miRNAs among studied sample groups 
were screened applying linear model fitting and Bayes 
approach. The obtained P values were adjusted for mul-
tiple testing using the Benjamini–Hochberg method.

Acquired small RNA seq data were utilized to develop a 
predictive model for early relapse detection. Four super-
vised machine learning (ML) algorithms were employed: 
PLS-DA (partial least squares discriminant analysis), 
k-NN (k-nearest neighbors), RF (random forest), and 
ANN (artificial neural network). The caret R library 
was used to train and optimize the predictive model as 
described before [28, 29, 74].

To assess the relative expression of miRNAs, the 
threshold cycle values were obtained using QuantStu-
dio 3 software (Thermo Fisher Scientific, USA). Relative 
miRNA expression was normalized to miR-191-5p, based 

on its stable expression in small RNA seq results and 
manufacturer’s recommendations. The relative expres-
sion was calculated by the 2−ΔCT method. Normalized 
expression levels were analyzed using a nonparametric 
Mann-Whitney U test, with model accuracy assessed by 
Receiver Operating Characteristic (ROC) analysis.

Correlations between continuous variables were evalu-
ated using Spearmans’ correlation coefficient. These 
analyses were conducted in GraphPad Prism 8.0.1 for 
Windows (GraphPad Software, Boston, Massachusetts 
USA, www.graphpad.com). Statistical significance was 
set at p < 0.05.

Matrix-assisted laser desorption/ionization mass time-
of-flight mass spectrometry (MALDI-TOF MS) sample 
preparation
A total of 29  PB serum samples were used for the 
MALDI-TOF MS analysis: 10 samples from group A and 
19 samples from group BC (10 samples from group B and 
9 samples from group C). Plasma samples were thawed 
on ice and centrifuged to remove cellular debris. Extrac-
tion involved two steps: first, 50 µL of ACN was mixed 
with 25 µL of plasma, sonicated, and centrifuged; the 
supernatant was discarded. Next, 50 µL of 50% ACN 
with 0.1% TFA was added to the precipitate, followed 
by sonication and centrifugation. The collected extract 
was mixed with the SA matrix in a 1:1 ratio (20 mg/mL 
dissolved in 50% ACN supplemented with 2.5% TFA). 
Immediately after, 2 µL of the homogenized sample were 
transferred to the metal target in five technical replicates 
as described previously [28].

Acquisition of mass spectra
Mass spectra were recorded using MALDI-7090-TOF-
TOF mass spectrometer (Shimadzu, Japan) equipped 
with a 2  kHz ultrafast solid-state UV laser (Nd: YAG: 
355 nm). Mass spectra were recorded in the linear posi-
tive ion mode, in the mass region of 2–20  kDa; pulsed 
extraction was set to 7.5 kDa, frequency of the laser was 
1 kHz, and the laser diameter was 100 μm. In total, 5 pro-
files from 1000 points were accumulated to record 1 mass 
spectrum.

Processing of mass spectra
Raw mass spectra in the mzML format were preprocessed 
using R programming language (4.0.4) to detect differen-
tially expressed species among mass spectra. MALDI-
quant library, and subsequently analysis using several R 
libraries enabling multivariate statistical modeling were 
used. The spectral preprocessing workflow followed stan-
dard procedures adopted from the MALDIquant: quality 
control, transformation, and smoothing, baseline correc-
tion, intensity calibration, spectra alignment, trimming 
(2–10 kDa), and peak detection [28, 75, 76]. The feature 

http://www.graphpad.com
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matrix was constructed only from the detected peaks 
presented in at least 20% of the total mass. An established 
matrix was employed in further multivariate statistical 
analysis and to develop a predictive ML model.

Results are presented using the orthogonal projections 
to latent structures discriminant analysis (OPLS-DA) 
using ropls library [28, 29]. The R2X and R2Y coeffi-
cients indicate the proportion of variance in the x and y 
variables that can be explained by the model. The Q2Y 
parameter provides an estimation of the predictive per-
formance of the model through the 5-fold cross-valida-
tion (CV) [77].

Acquired MALDI-TOF MS data were utilized to 
develop a predictive ML model able to categorize 
patients into classes of early relapse (group A) and late-
onset relapse (groups B and C combined). Furthermore, 
clinical parameters were added to the model to improve 
its predictive value. Four supervised ML algorithms were 
employed as described [28, 29].
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