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Timing is everything: cell cycle control of Rad52
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Abstract

Regulation of the repair of DNA double-strand breaks by homologous recombination is extremely important for
both cell viability and the maintenance of genomic integrity. Modulation of double-strand break repair in the yeast
Saccharomyces cerevisiae involves controlling the recruitment of one of the central recombination proteins, Rad52,
to sites of DNA lesions. The Rad52 protein, which plays a role in strand exchange and the annealing of single
strand DNA, is positively regulated upon entry into S phase, repressed during the intra-S phase checkpoint, and
undergoes posttranslational modification events such as phosphorylation and sumoylation. These processes all con-
tribute to the timing of Rad52 recruitment, its stability and function. Here, we summarize the regulatory events
affecting the Rad52 protein and discuss how this regulation impacts DNA repair and cell survival.

Introduction to double-strand break repair
Double-strand breaks (DSBs) can be repaired by two
major pathways, non-homologous end-joining (NHEJ)
or homologous recombination (HR). NHEJ directly
rejoins broken DNA ends by ligation [1,2], while HR
utilizes a homologous DNA template to prime DNA
synthesis and restores genetic information lost at the
break site (Figure 1; [3-5]). Both NHEJ and HR follow
stepwise pathways leading to repair that involve distinct
sets of proteins. In both pathways, the MRX complex–
comprised of Mre11, Rad50 and Xrs2–first recognizes
and binds the exposed ends of the DSB [6-10]. In NHEJ,
the yeast Ku70/Ku80 heterodimer also recognizes and
binds the DNA ends. Ku70/Ku80 then recruits the Lif1/
Nej1 heterodimer and Lif1 both recruits and stimulates
Dnl4 ligase activity to complete repair [1,11-14]. Proces-
sing of the ends for NHEJ is limited, and NHEJ itself is
potentially mutagenic, resulting from the loss of genetic
material at the break/join site.
Homologous recombination, on the other hand, rejoins

the DNA ends faithfully using a homologous template for
repair and requires the Rad52 epistasis group of proteins
[4,5]. Initiation of HR begins with processing of the DSB
ends by one or more nucleases into 3’ single strand DNA
(ssDNA) tails [4,15,16]. The ssDNA is bound by RPA,
which also recruits the checkpoint complex Mec1-Ddc2,
homologs of vertebrate ATR-ATRIP respectively [6,17].
Rad52, a central component of the yeast HR machinery,

catalyzes the assembly of the RecA homologue Rad51
into a long nucleoprotein filament, the displacing RPA
from the ssDNA tails [18-21]. This filament initiates the
homology search using the sequence to be repaired–the
“acceptor"–to find a repair template–the “donor” of
genetic information. Once a homologous template is
found, the nucleoprotein filament engages in strand inva-
sion involving the Swi/Snf homolog Rad54 [22]. The
Rad55/Rad57 complex stabilizes the Rad51/DNA fila-
ment promoting strand pairing and exchange [23,24].
Figure 2 shows three possible outcomes for the repair of
a DSB by HR after invasion of one end. In canonical dou-
ble-strand break repair (DSBR) (Figure 2A), second end
capture–likely catalyzed by the annealing activity of
Rad52–results in both ends of the DSB invading the
acceptor [25]. DNA replication primed from both donor
3’ ends leads to the formation of a joint molecule con-
taining two Holliday junctions. In synthesis-dependent
strand annealing (SDSA, Figure 2B) new DNA synthesis
occurs along only one strand, which is subsequently dis-
placed by a DNA helicase. The resultant ssDNA tail con-
tains complementary sequence capable of annealing to
the other DSB end. In this case, an additional role for
Rad52 is to catalyze annealing to form duplex DNA
between the 3’ tails [26-28]. Any resulting gaps are filled
by DNA replication. In the absence of second-end cap-
ture and/or SDSA, break-induced replication (BIR) can
occur (Figure 2C). In BIR, the single DNA end that
invades the homologous chromosome primes new DNA
synthesis, which proceeds until it reaches the end of the
chromosome [4,5,29-31].
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Cell cycle regulation of homologous
recombination
Double-strand break repair is highly coordinated with
the cell cycle: NHEJ occurs primarily in G1 while
HR takes place predominantly during S and G2/M
[3,4,7,32,33]. The major cell cycle kinase, CDK1–Cdc28
in S. cerevisiae–lies at the heart of the cell cycle regula-
tion of DSBR CDK1 regulates the initiation of HR at
two distinct levels: 1) DNA resection and 2) recruitment
of Rad52 itself. Extensive resection of DSB ends only
occurs in the presence of the high CDK1 activity in
S and G2/M [34-36]. The MRX-associated nuclease
Sae2–CtIP in vertebrates–aids in the processing of bro-
ken DNA ends along with the helicase Sgs1, and the
Exo1 and Dna2 nucleases [37-42]. CDK1 phosphorylates
Sae2, promoting highly processive DNA resection upon
entry into S phase [43]. The result is long tracts of 3’
ssDNA flanking the break site. Relocalization of repair
proteins to DSBs, such as RPA, can be visualized as sub-
nuclear foci [44]. When RPA binds ssDNA exposed in

G1 cells, the foci formed are observably smaller and less
intense than those in S and G2/M cells, perhaps reflect-
ing the difference in resection rate between these cell
cycle states [45].
During S and G2/M, Rad52 recruitment is dependent

upon RPA, although RPA bound to ssDNA is not suffi-
cient for Rad52 recruitment in G1 [6,45]. Studies have
shown that CDK1 activity is also required for the recruit-
ment of Rad52, even in the presence of RPA-bound
ssDNA [46,47]. Interestingly, Rad52 recruitment to DSB
sites does not rely on DNA replication per se, as cells
that have entered S phase, but have not replicated their
DNA, readily form Rad52 foci in response to DNA
damage [46,47]. Exactly how CDK1 regulates this process
is unknown. Perhaps CDK1 acts directly on the Rad52
protein itself or phosphorylates an upstream factor like
RPA. Both of these proteins are good candidates since–
like Rad52 (see below)–Rfa2 is also phosphorylated in
a cell cycle-dependent manner and in response to geno-
toxic stress [48-53]. In addition, phosphorylation of the

Figure 1 Repair of a DSB proceeds according to cell cycle stage. In G1, cells have a single copy of each chromosome (light blue and light
green). If a break occurs in G1, the cell repairs the DSB by NHEJ, directly resealing the DNA ends (top). In G2, after chromosomes have been
replicated, there is a sister chromatid, an identical copy of each original chromosome (dark blue and dark green, bottom). When a DSB occurs in
G2, it is normally repaired by HR using either the sister chromatid or a homologous chromosome as a template. Repair from the sister (I) results
in restoration of the exact information lost at the break site. Repair from the homolog (II), however, may lead to loss of heterozygosity if
accompanied by a crossover.
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N-terminus of human Rpa2 by CDK1 is important for
DNA repair as cells expressing a non-phosphorylatable
form of Rpa2 exhibit an altered cell cycle profile and a
persistent DNA damage signal [54].

Regulation of HR during DNA replication
Cells are most vulnerable to genomic insults during
DNA replication and entry into S phase. In preparation
for DNA replication, a series of protein complexes bind
sequentially to specific DNA sequences in a process
termed origin licensing [55-58]. Proper origin licensing
during G1 is essential for rapid and faithful DNA repli-
cation during S phase, as origins are unable to re-license

until the cell has progressed through the cell cycle to
M phase [59]. DNA replication initiates by origin firing,
when the replisome–including the DNA helicase
encoded by Mcm2-7, the DNA replication clamp PCNA
and both the leading and lagging strand polymerases–
moves away from origins and DNA synthesis begins.
Damage can arise during replication by mechanical
stress on the DNA itself or if the replisome encounters
covalently attached DNA adducts. Lesions may also
arise if replication does not proceed efficiently, leading
to the uncoupling of DNA unwinding and new DNA
synthesis. To maintain genomic integrity, a number of
mechanisms have evolved both to stabilize DNA during

Figure 2 Models of homologous recombination. DSBs can be repaired using the homologous recombination machinery in a variety of ways.
The DNA ends are first processed into 3’ ssDNA tails. These tails invade a homologous template (red) priming new DNA synthesis (dashed line).
Three possible outcomes from this invasion are shown. A) In canonical DSBR, both the initial invading strand and the captured second end
anneal to the homologous template and prime new DNA synthesis, resulting in a double Holliday junction that can be resolved by nucleases
into crossover or non-crossover products (non-crossover product shown). B) Alternatively, after the single ssDNA tail invades the homologous
template, a round of DNA synthesis is primed from the 3’ end (dashed red line). Synthesis-dependent strand annealing (SDSA) occurs when the
invading strand, along with the newly synthesized segment, is unwound by a helicase and annealed with the other resected end. C) In break-
induced replication (BIR), one end of the DSB is lost and the remaining end invades the homologous template priming DNA synthesis to the
end of the chromosome.
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replication and to activate specific S phase checkpoints
in the event of DNA damage (see Figure 3).
The checkpoint kinase Mec1 and its activation partner

Ddc2 play key roles in genome stability during S phase.
Mec1 kinase activity and its downstream effector kinase
Rad53 are required to stabilize stalled forks and activate
the intra-S phase checkpoint [60-62]. Mec1 phosphory-
lates Mrc1, an intra-S phase checkpoint protein asso-
ciated with the replication fork, and promotes restart of
stalled forks [63-65]. Furthermore, Mrc1 is required for
the accumulation of Mec1 at stalled forks, independently
of Rad53 activity [63]. Mrc1 physically inhibits the
uncoupling of the replicative helicase from the leading

strand polymerase, locking both halves of the replisome
at the stalled fork [53,66]. How these checkpoint com-
plexes interact with the recombination machinery in S
phase is not well understood.
Hydroxyurea (HU), a potent ribonucleotide reductase

inhibitor, decreases dNTPs pools and stalls replication
forks, activating the intra-S phase checkpoint. In the
presence of HU, Rad52 is unable to form either sponta-
neous or damage-induced recombination foci [6,46,47].
In addition, the rate of resection at DSBs is significantly
reduced during HU-mediated S phase arrest, leading to
a reduction in ssDNA formation [46]. One argument is
that the amount of RPA-bound ssDNA is limited and

Figure 3 Regulation of HR. Recruitment of the HR machinery to a DSB is regulated by both the major cell cycle kinase CDK1 and the
checkpoint kinase Mec1. CDK1 phosphorylation is marked as a yellow circle and Mec1 phosphorylation is marked as a yellow star. A) Once a
DSB is detected, the DNA ends are resected forming 3’ ssDNA tails by multiple nucleases that are positively regulated by CDK1/B type cyclin
kinase activity. RPA binds the ssDNA and recruits the ATR-ATRIP homolog Mec1-Ddc2 and the 9-1-1 complex comprised of Ddc1, Mec3 and
Rad17 (indicated by Ddc1). Finally, Rad52 catalyzes the formation of a Rad51 nucleoprotein filament along the ssDNA before HR can proceed. B)
The intra-S phase checkpoint proteins Mrc1, Tof1 and Csm3 travel with the fork during normal replication. In response to DNA damage, the
replication fork stalls, activating Mec1 which in turn phosphorylates Mrc1. Phosphorylated Mrc1 promotes stable fork pausing and contributes to
Mec1 retention at the fork. In the absence of Mec1, the replisome is not stable when the fork pauses or stalls, leading to the uncoupling of the
MCM helicase and the polymerase (grey) and fork collapse (bottom right). The DNA replication clamp PCNA is the circle adjacent to MCM2-7.
Rad52 is recruited to the collapsed fork and HR restarts replication by one-end invasion of the intact DNA molecule (here shown as lagging
strand invasion of the leading strand template). C) In repetitive sequences (indicated by green arrows) the Smc5/6 complex is recruited to DSBs
along with the DSBR machinery, shown in A, to mediate repair. Smc5/6 and the sumoylation state of Rad52 affect whether repair deletes or
retains DNA sequences between repeats (purple triangles) during direct repeat recombination.
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may not be sufficient to recruit Rad52. However, even
during HU arrest, IR-induced DNA breaks undergo
enough resection to form RPA foci and still do not form
Rad52 foci [47]. These results suggest that a simple
model hinging on available RPA-bound ssDNA does not
fully explain the complete absence of Rad52 foci There-
fore we propose that the intra-S phase checkpoint
imposes an additional level of regulation, suppressing
Rad52 foci both at stalled replication forks and at DSBs.
This regulation is likely performed by Mec1, since sup-
pression of Rad52 foci in HU is Mec1/Rad53-dependent
[47]. However Rad52 is not a direct target of either the
Mec1 or Rad53 kinases ([67]; AAM, unpublished data).
Interestingly, in S. pombe, Rad52 does associate with
stalled replication forks; however, the levels are too low
to form observable foci [68]. These results indicate that
low-level Rad52 association is important to initiate
recombination in case of fork collapse, although the pre-
cise function of Rad52 at stalled forks is unknown. In
budding yeast, it is clear that the recruitment of the HR
machinery to stalled forks is detrimental to cell survival.
This notion is supported by the fact that HR is toxic in
the absence of proteins necessary to resume replication,
in particular Top3, Sgs1, and Srs2 [69-72].
Although HR is inhibited at stalled replication forks, it is

necessary to permit HR during S phase for cell survival in
the event of fork collapse. In support of this idea, sponta-
neous Rad52 foci are observed in ~50% of S phases [73].
The HR machinery–in particular Rad51 and Rad52–plays
an important role in replication fork restart, an event
where a one-ended DNA fragment is generated (Figure 3;
[4,5]). Interestingly, this view of replication fork restart
resembles BIR, which also couples Rad52-mediated inva-
sion of a one-ended DNA break with extensive DNA repli-
cation (Figure 2C). Furthermore, loss of either Rad51 or
Rad52 is synthetic lethal In a Mec1- or Mrc1-deficient
background, suggesting that both of these proteins are
required for the restart of collapsed forks [74,75]. Thus,
repair of the resulting DNA break requires many of the
same components involved in canonical DSBR (Figure 3).

Regulation of Rad52 activity by posttranslational
modification
The S. cerevisiae Rad52 protein is phosphorylated both
constitutively and upon entry into S phase. These phos-
phorylation events occur in the C terminus, although
the exact residues and phenotypic effects of loss of
phosphorylation have yet to be determined [48]. Inter-
estingly, Rad52 does not exhibit further phosphorylation
upon exposure to DNA damaging agents. Furthermore,
these multiple phosphorylation events are Mec1 and
Tel1 independent, underscoring their damage-indepen-
dent nature [48]. Although CDK1 activity is required for
Rad52 recruitment to foci, it is unclear whether CDK1

is directly responsible for Rad52 cell cycle-dependent
phosphorylation. A tantalizing possibility is that CDK1-
dependent phosphorylation of RPA regulates Rad52
recruitment only after the cell has entered into S phase.
In addition to phosphorylation, Rad52 also undergoes

sumoylation on its N terminus and in the central domain
at lysines 10, 11 and 220, in an Ubc9-dependent manner
[76]. Mutation of these residues leads to a loss of sumoy-
lation on Rad52, yet it does not affect overall HR levels
or Rad52 recruitment to DNA damage. On the other
hand, loss of Rad52 SUMO species does decrease protein
stability and affect the outcome of direct repeat recombi-
nation, specifically decreasing events that delete interven-
ing DNA [76]. In the absence of Rad52 sumoylation,
recombination at rDNA is also affected, a locus consist-
ing of 100-200 tandem repeats of the ribosomal genes
that resides in the nucleolus. Non-sumoylatable Rad52
forms foci in the nucleolus and shows an increase in
rDNA recombination, where wild-type Rad52 foci are
normally excluded from the nucleolus [77]. Interestingly,
regulation of Rad52 focus formation at rDNA also
requires the Smc5/6 complex, which removes cohesion
during mitotic exit for proper chromosomes segregation
and is itself involved in sumoylation [78,79]. Together,
these results suggest a link between the resolution of
recombination intermediates at highly repetitive DNA to
chromosome segregation during mitosis.

Conclusions
Regulation of Rad52 affects double strand break repair by
initiating and/or directing many aspects of HR. Cell cycle
regulation of its recruitment inhibits initiation of homolo-
gous recombination processes in G1. Checkpoint regula-
tion of Rad52 blocks its recruitment to stalled DNA
replication forks allowing them to restart independently of
HR. These regulatory mechanisms help suppress poten-
tially mutagenic or lethal recombination events in different
ways. Limiting resection of the DNA ends and inhibiting
the recruitment of HR proteins in G1 allows cells to repair
DSBs by NHEJ with little to no information lost at the
break site. After DNA replication however, the cell con-
tains a sister chromatid, which is an identical template for
repair and thus recombination is non-mutagenic (Figure 1).
In diploid cells, repair can proceed from the homologous
chromosome potentially leading to loss of heterozygosity
that impacts the oncogenic transformation of cells by
homozygosing deleterious mutations, resulting in wide-
spread genomic instability.
However, the cell does not wait for the completion of

replication to begin HR, as Rad52 is recruited into
damage-induced foci early during S phase [47,73]. Entry
into S phase may present a point in the cell cycle where
the repair of a potentially lethal lesion such as a DSB
that occurred in G1 must undergo non-conservative
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recombination before replication can proceed. At this
stage, the cell may repair the DSB using the homologous
chromosome as a template, again with the potential for
loss of heterozygosity. Alternatively, the break can be
repaired using a non-homologous or homeologous
sequence to promote cell survival. Depending on the
choice of the sequence used to template the repair, the
outcome may result in the loss of DNA flanking the
break site. Furthermore, SUMO-modified forms of
Rad52 affect DNA repair within repetitive sequences.
How these alternate forms of Rad52 mediate template
choice is unclear and elucidating their roles will impact
our understanding on how DNA repair proceeds.
Finally, it is not only necessary to restrict the activity

of recombination to different stages of the cell cycle, it
is also important to complete the process appropriately.
Future studies will clarify how Rad52 and other mem-
bers of the HR machinery dissociate from the repaired
DNA, adding another level of Rad52 regulation. For
example, the Srs2 helicase antagonizes Rad51 filament
formation that occurs independently of Rad52 but does
not efficiently remove Rad52 protein, which may mark
true recombination sites [80]. Other chromatin remodel-
ing enzymes/complexes such as Rdh54, Ino80 or Rsc
may also be involved in the dissolution of HR com-
plexes. In the end, the co-ordination of recombination
in budding yeast revolves around the Rad52 protein for
integration of checkpoint and cell cycle signals necessary
to coordinate an appropriate repair response.
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