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Abstract
The kinase Wee1 has been recognized for a quarter century as a key inhibitor of Cyclin dependent kinase 1 (Cdk1) and 
mitotic entry in eukaryotes. Nonetheless, Wee1 regulation is not well understood and its large amino-terminal 
regulatory domain (NRD) has remained largely uncharted. Evidence has accumulated that cyclin B/Cdk1 complexes 
reciprocally inhibit Wee1 activity through NRD phosphorylation. Recent studies have identified the first functional NRD 
elements and suggested that vertebrate cyclin A/Cdk2 complexes also phosphorylate the NRD. A short NRD peptide, 
termed the Wee box, augments the activity of the Wee1 kinase domain. Cdk1/2-mediated phosphorylation of the Wee 
box (on T239) antagonizes kinase activity. A nearby region harbors a conserved RxL motif (RxL1) that promotes cyclin 
A/Cdk2 binding and T239 phosphorylation. Mutation of either T239 or RxL1 bolsters the ability of Wee1 to block 
mitotic entry, consistent with negative regulation of Wee1 through these sites. The region in human somatic Wee1 that 
encompasses RxL1 also binds Crm1, directing Wee1 export from the nucleus. These studies have illuminated important 
aspects of Wee1 regulation and defined a specific molecular pathway through which cyclin A/Cdk2 complexes foster 
mitotic entry. The complexity, speed, and importance of regulation of mitotic entry suggest that there is more to be 
learned.

Introduction: Wee1 is a Cdk1 kinase
Mitotic entry is the paradigmatic cell cycle transition and
example of Cdk regulation. Yet, our understanding of this
transition remains superficial. A long-term goal of
research in this area is to design drugs that treat cancer
by either blocking mitotic entry or driving cells into mito-
sis in the face of lethal DNA damage. Cyclin B/Cdk1
(Cdc2/Cdc28) complexes direct many of the events of
mitosis. These events must be launched in swift, coordi-
nated fashion but only after DNA synthesis is completed
and DNA damage is repaired. To effect such control,
cyclin B/Cdk1 activity is regulated through dynamic post-
translational modifications. Wee1 is a universal Cdk1
inhibitor that phosphorylates a tyrosine residue (Y15) in
the ATP binding site, thereby blocking Cdk1 activity (Fig
1). Research is unraveling an intricate dance executed by
these two kinases and closely related Cdk complexes as
they exert reciprocal regulation. This commentary
focuses on recent advances in vertebrates, but leans also
on elegant parallel studies in budding yeast of the interac-

tion between Cdk1 (Cdc28) and the Wee1 homologue
Swe1 [1]. In vertebrates, embryonic (Wee1B in most spe-
cies, Wee1A in Xenopus) and somatic (Wee1A in most
species, Wee1B or Wee2 in Xenopus) proteins are
encoded by two distinct genes [2]. Functional differences
between embryonic and somatic proteins are beginning
to emerge (discussed below).

Reciprocal regulation of Wee1 by Cdk1
Wee1 was discovered in yeast as the target of mutations
that allow cells to divide at half their usual size [3]. Wee1
is regulated at multiple levels, including transcription [4],
translation [5], and protein stability [6-10], but we focus
here on recent progress made in understanding the
effects of Cdk1/2 phosphorylation on Wee1 activity and
localization. Wee1 becomes hyperphosphorylated during
mitosis, accompanied by reduced activity [4,11]. More-
over, Wee1 was found to be directly inactivated by cyclin
B/Cdk1 complexes in vitro [12], although this effect has
remained controversial (see below) [4]. The net effect is a
positive feedback loop (Fig 1) that could logically allow
Cdk1 activity to increase rapidly, thereby facilitating
prompt execution of the dramatic events of mitosis.
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Cyclin B/Cdk1 phosphorylation sites have recently
been mapped in Swe1 and Xenopus embryonic Wee1
[1,13] (D. Kellogg, unpublished). The major sites each
manifest the loose S/T-P Cdk consensus phosphorylation
sequence. Two sites in Xenopus embryonic Wee1 were
found to be conserved among vertebrate Wee1 species
and functionally important for inhibiting Wee1 kinase
activity. The site with stronger effect is T239, using the
numbering system for human somatic Wee1 (Fig 2; T150
in Xenopus embryonic Wee1). This site becomes phos-
phorylated shortly before mitotic entry in cycling Xeno-
pus egg extracts. A T239 mutant showed increased
inhibition of mitotic entry in cyclin B-activated inter-
phase extracts [13]. Xenopus somatic Wee1 is also phos-
phorylated at this site (T186 in that protein) [14]. Further
studies revealed that an encompassing peptide termed
the 'Wee box' (Fig 2) augments the activity of the kinase
domain, in cis or in trans [14]. Interestingly, the Wee box
is conserved in most eukaryotic Wee1 proteins but not
Swe1. Cdk phosphorylation in Swe1 has thus far been
shown to be activating rather than inhibiting during early
phases of mitosis [1](D. Kellogg, unpublished). The
absence of a Wee box offers a potential explanation for
this different outcome in Swe1. Although mutation of
T239 to alanine in Xenopus somatic Wee1 yielded a more

potent blockade of mitosis, Cdk1-mediated phosphoryla-
tion in vitro did not inactivate Wee1 kinase activity [14].
Further studies revealed that T239 phosphorylation in
vivo directs binding of the peptidyl-prolyl isomerase Pin1.
Pin1 appears to inactivate Wee box function, although
the detailed mechanism remains unknown [14]. In sum-
mary, these studies defined a pathway through which
cyclin B/Cdk1 complexes negatively regulate Wee1.

A role for cyclin A/Cdk2 complexes
Beyond this positive-feedback loop involving cyclin B/
Cdk1 complexes, evidence has accumulated for a decade
that the major Cdk complexes in the preceding S and G2
cell cycle phases--cyclin A (A2)/Cdk2 complexes--help
pave the way for mitosis by reducing cyclin B/Cdk1 Y15
phosphorylation. Microinjection of cyclin A was
observed to drive cultured human cells into mitosis and
injection of cyclin A/Cdk2 inhibitors could block mitotic
entry [15,16]. Induction of a dominant negative mutant of
Cdk2 arrested cells in late S and G2 phase, associated
with increased Cdk1 Y15 phosphorylation [17]. Similarly,
cyclin A RNAi imposed a G2 arrest associated with
increased Cdk1 Y15 phosphorylation [18]. Cdc25 phos-
phatases, the enzymes that reverse Cdk1 Y15 phosphory-
lation, showed reduced activity when cyclin A/Cdk2

Figure 1 Reciprocal regulation of Wee1 and Cdk1. The feedback loop is a double-negative one, resulting in positive regulation of cyclin B/Cdk1 as 
the activity of this Cdk complex rises. Wee1 inhibits Cdk1 by phosphorylating it on tyrosine 15. Myt1 also performs this modification, though Wee1 
appears to be dominant. Cdc25 phosphatases (A, B, C) remove the phosphate group. Cdk1 can also phosphorylate Wee1, inhibiting it.
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complexes were inhibited [18]. Although augmented
Cdc25 expression was insufficient to drive mitotic entry
in the setting of limiting cyclin A [19], 'knockdown' of
Wee1 was, indicating that Wee1-mediated Cdk1 phos-
phorylation is rate limiting when cyclin A function is
compromised. Finally, targeted deletion of the cyclin A2
gene was observed to be lethal in the mouse embryo and
the adult, associated with accumulation of some cells in
G2 [20]. These observations point to a role for cyclin A/
Cdk2 complexes in antagonizing Cdk1 Y15 phosphoryla-
tion and driving mitotic entry. Nonetheless, the mecha-
nism(s) remained unclear.

Cyclin A/Cdk2 complexes bind Wee1
We asked whether cyclin A/Cdk2 complexes might
antagonize Cdk1 Y15 phosphorylation by directly bind-
ing and inactivating Wee1. Wee1 was present in cyclin A
and Cdk2 immunoprecipitates from U2-OS cells and
associated efficiently with exogenously expressed Cdk2
[21]. In contrast, Wee1 was less abundant in cyclin E
immunoprecipitates, normalized for Cdk2 content.
Cyclin E is expressed in S and G2 phase U2-OS cells,
when Wee1 expression is robust. Thus, the preferential
association of Wee1 with cyclin A/Cdk2 complexes over
cyclin E/Cdk2 complexes suggested that the cyclin might
dictate the association and that Wee1 might be recog-
nized as a cyclin A/Cdk2 substrate.

Conserved Cyclin A binding motifs in Wee1
Cyclin A/Cdk2 complexes are known to preferentially
recognize some substrates via short sequence motifs
termed 'Cy' or RxL' motifs [22-25]. Human somatic Wee1
contains four RxL sequences that are conserved through-

out vertebrate somatic Wee1 proteins. Two are within the
kinase domain and may contribute to kinase activity. One
is in the short carboxy-terminus and one in the NRD. The
latter, RxL1, is the most conserved. It is present in Droso-
phila Wee1 and is followed by a hydrophobic residue in
the +5 position, a favored feature for cyclin A binding.
The NRD has not been crystallized, and its structure is
unknown. Indeed, calculations of potential order, based
on primary sequence content, suggest that the NRD is
generally disordered [21]. The region surrounding RxL1,
however, stood out for its potential order. This circum-
stantial evidence suggested that RxL1 might serve a con-
served functional role in Wee1. Consistent with this
notion, another prominent region of predicted order in
the NRD was nearby and contained the Wee box and
T239. Based on evidence from studies in Xenopus, a role
of RxL1 might be to direct phosphorylation and inactiva-
tion of the Wee1 box.

Role for RxL1 in cyclin A/Cdk2 binding and 
phosphorylation of Wee1
We mutated each of the RxL sequences in Wee1, singly
and in combination, and examined the impact on cyclin
A/Cdk2 binding and T239 phosphorylation. Mutations of
the RxL sequences diminished stable association of Wee1
with cyclin A/Cdk2 complexes in vivo and in vitro [21].
Mutation of RxL1 preferentially reduced T239 phospho-
rylation. Consistent with loss of inhibitory regulation,
expression of the RxL1 and T239 mutants, respectively,
resulted in greater phosphorylation of Cdk1 Y15 than
wild type Wee1. Moreover, transient transfection of RxL1
and T239A mutants was each associated with an
increased fraction of cells in G2 phase. These observa-

Figure 2 Primary structure of vertebrate somatic Wee1 proteins. The numbering is from human somatic Wee1. The NRD, kinase domain, and 
short carboxy-terminal domain are marked, with border amino acid residues numbered (below). RxL1 (residues 180-2) is embedded within the Crm1 
binding site (175-184). The T239 Cdk phosphorylation site, an inhibitory modification, resides within the Wee box, a positive regulatory element.
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tions suggest that cyclin A/Cdk2 complexes inhibit Wee1
activity via binding to RxL1 and phosphorylation of T239
and define a molecular pathway through which cyclin A/
Cdk2 complexes drive mitotic entry. Consistent with
these in vivo data, studies in human somatic cell extracts
showed that recombinant cyclin A can direct the phos-
phorylation and inactivation of Wee1 more efficiently
than cyclin B, and combined addition of cyclins A and B
induced nuclear envelope breakdown more efficiently
than addition of either cyclin alone [26].

Increased nuclear localization of RxL1 mutant
The RxL1 mutant appeared to be modestly more potent
than the T239A mutant in mediating G2 phase arrest
under the conditions examined, suggesting that loss of
the RxL1 site might impact more than phosphorylation of
T239. We therefore examined other properties of Wee1.
Wee1 has been described as being localized to the
nucleus during interphase and the cytoplasm during
mitosis. Whether this redistribution is a cause or effect of
nuclear envelope breakdown has remained unclear. Early
studies demonstrated that nuclear Wee1 could potently
protect cells from premature mitosis, even in the pres-
ence of activated cyclin B/Cdk1 complexes in the cyto-
plasm [27]. These studies implied that the nucleus was an
important site of action of Wee1. Examination of their
subcellular localization showed that transfected Wee1 wt
and T239A exhibited a range of locations, from the
nucleus to the cytoplasm [21]. In striking contrast, the
RxL1 mutant was almost exclusively nuclear.

RxL1 is embedded within a nuclear export signal
The simplest explanation for the restricted nuclear local-
ization of the RxL1 mutant was that this site directs
cyclin A/Cdk2-mediated phosphorylation of another res-
idue(s) that drives Wee1 cytoplasmic redistribution. This
scenario may yet prove to be true, but examination of the
Wee1 primary structure suggested another potential
explanation. The RxL1 sequence overlaps with residues
that match the loose consensus Crm1-dependent nuclear
export signal (NES) [28-30]. Subsequent experiments
supported the notion that Wee1 undergoes Crm1-depen-
dent nuclear export. Wee1 and Crm1 co-immunoprecipi-
tated, pointing to their physical association. Leptomycin
B, a Crm1 inhibitor, blocked Wee1 export. Finally, inde-
pendent mutation of candidate NES sequences amino-
terminal of RxL1 (but still within the small conserved,
potentially structured region) markedly reduced Crm1
association and Wee1 export. In contrast, T239 phospho-
rylation was unaffected. These results suggest that the
RxL1 region also serves as a Crm1 binding site, directing
export of Wee1 from the nucleus. In addition, the
decreased Wee1 T239 phosphorylation seen in an RxL1
mutant is not a secondary effect of increased nuclear

retention. On the other hand, RxL1 and cyclin A/Cdk2
complexes may play a role in Wee1 export, because inhib-
iting these Cdk2 complexes by different means aug-
mented Wee1 nuclear localization [21]. Previous studies
suggest that phosphorylation of a carboxy-terminal Wee1
residue, S642, fosters 14-3-3 binding and cytoplasmic
localization [31]. This pathway may act in parallel to the
Cdk2/NES/Crm1 pathway. Most of the experiments on
S642 were carried out using a Wee1 mutant lacking the
Crm1-dependent NES, so the function of S642 phospho-
rylation in the context of the intact protein requires fur-
ther definition. In summary, these results provide
evidence for a bifunctional region encompassing RxL1
and the NES that mediates binding of cyclin A/Cdk2
complexes and Crm1, respectively. These interactions
result in Wee box phosphorylation, inhibition of kinase
activity, and nuclear export of somatic Wee1 (Fig 3).

Discussion: New insights into Wee1 regulation
One can draw a number of conclusions from this recent
work. First, redistribution of human somatic Wee1 to the
cytoplasm is an active, temporally regulated event, rather
than a passive byproduct of nuclear envelope breakdown.
Based on conservation of NES consensus sequences
among vertebrate somatic Wee1 proteins, nuclear export
might also be conserved, suggesting the presence of
selection pressure to maintain it. Given the lack of con-
servation of the NES in embryonic proteins, regulated
export of Wee1 may exert an additional constraint on
mitotic entry unique to somatic cells. In this light, it was
somewhat surprising that expression of the NES mutant
did not impose increased G2 arrest under the conditions
tested [21]. It seems probable that a functional role will be
uncovered by further experimentation. Second, RxL1
directs phosphorylation of T239, a modification that
inhibits Cdk1 Y15 phosphorylation by Wee1. The Xeno-
pus studies suggest that T239 phosphorylation antago-
nizes the function of the Wee box. Taken together, these
studies have defined a direct molecular pathway through
which cyclin A/Cdk2 complexes drive mitotic entry.
Third, it may not be coincidence that the RxL1 cyclin A/
Cdk2 binding site resides within the Crm1 binding site.
Indeed, inhibition of Cyclin A/Cdk2 activity appears to
reduce Wee1 export [21]. The mechanism may be direct
or indirect. For example, these Cdk2 complexes could
modify components of the export pathway or inactivate a
nuclear localization sequence in Wee1. However, the sim-
plest model is that RxL1 directs an additional cyclin A/
Cdk2 phosphorylation(s) in Wee1 that fosters export
(dashed lines in Fig 3).

Might cyclin A/Cdk1 complexes also bind RxL1 and
inactivate Wee1? Cdk2 appears generally to be the pre-
ferred binding partner for cyclin A when Cdk1 and Cdk2
are expressed at their normal levels [17,18,32]. However,
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Cdk1 binds a small but increasing fraction of cyclin A
during S and G phases [32]. Thus, cyclin A/Cdk1 com-
plexes may contribute to Wee1 inactivation in normal
cells and likely do so in cells rendered Cdk2-deficient by
'knockdown' or deletion of the Cdk2 gene [33,34]. Indeed,
Cdk1 appears to be the most potent histone H3 kinase
partner for recombinant cyclin A in HeLa S3 cell extracts
[26]. Similarly, cyclin A is the dominant S and G2 phase
cyclin and is required for cell cycle progression in many
cell types, but compensatory increases in cyclin E in some
cells rendered cyclin A deficient might fill the void [20].
Cyclin E has shown binding activity toward certain RxL
motifs [23,35].

Conclusions: Reconciliation of cyclin A/Cdk2 
complexes as both S and M phase drivers
The conclusion that cyclin A/Cdk2 complexes drive
mitotic entry raises an apparent conundrum. These com-
plexes also drive DNA synthesis [17,20,36], and it is criti-
cal that DNA synthesis be completed prior to mitosis.
This conceptual stumbling block likely accounts in part
for the prior exclusion of cyclin A/Cdk2 complexes from
most models of mitotic entry. The conundrum can, in
principle, be solved in several ways. One model is that
inactivation of Wee1 by cyclin A/Cdk2 complexes is nec-
essary but insufficient for initiation of mitosis. In this
model, cyclin A/Cdk2-mediated inactivation of Wee1

Figure 3 Model for regulation of Wee1 by cyclin A/Cdk2 complexes. Wee1 is depicted as a cyclin B/Cdk1 Y15 kinase with a globular kinase domain 
(dark blue) and a relatively unstructured NRD (light blue). The Cyclin A/Cdk2 complex binds RxL1 and phosphorylates T239. It might also phosphory-
late a Wee1 residue that contributes to Crm1 binding (dashed arrow to S/TX). Crm1 binds the NES and possibly the additional cyclin A/Cdk2 phos-
phorylation site (dashed line) and mediates Wee1 export from the nucleus. S phase substrates possessing RxL motifs compete with cyclin A/Cdk2 
complexes for binding to Wee1.
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may license mitotic entry, without being the final trigger.
For example, Cdc25 phosphatases may need to be acti-
vated as well [18,26]. An alternative model is that Wee1
inactivation is 'ultrasensitive' to cyclin A/Cdk2 activity. In
this case, inactivation of Wee1 may require accumulation
of cyclin A/Cdk2 activity beyond a threshold. As part of
this model, Wee1 phosphorylation at multiple sites may
be needed to effect a switch-like inactivation of the kinase
[37,38]. This model is similar to the inactivation of Sic1
by Cdk1 complexes that drives S phase progression in
yeast [39]. Nuclear export and/or Cyclin B/Cdk1-medi-
ated phosphorylation might complete Wee1 inactivation
in some settings. Evidence for ultrasensitivity in Xenopus
embryonic Wee1 inactivation by cyclin B/Cdk1 com-
plexes has been obtained [37,38]. Swe1 phosphorylation
by Cdk1 also appears to be ultrasensitive (D. Kellogg,
unpublished). Moreover, Ferrell and co-workers have
developed evidence that competition among Cdk1 sub-
strates can contribute to an ultra-sensitive response [37].
This model appears to be well suited to apply to regula-
tion of Wee1 by cyclin A/Cdk2 complexes. Competition
with the many other cyclin A/Cdk2 binding partners dur-
ing DNA synthesis might help prevent premature inacti-
vation of Wee1 and restrain mitotic entry until the time is
propitious (Fig 3). Other pathways, downstream of or
parallel to Wee1, almost certainly contribute to mitotic
entry. In addition, other kinases may contribute to Wee1
NRD phosphorylation [40]. Given the significance of the
decision to enter mitosis, the diversity of relevant inputs,
and the flexibility of protein based regulatory systems
[41,42]; it would seem unwise to underestimate the
sophistication of the choreography.

Future directions
There are a number of issues that merit further study.
The bifunctional nature of the NES/RxL1 site raises the
question of whether physical occupancy of the site by
cyclin A/Cdk2 complexes competes with that of Crm1.
The stable association of Wee1 with both binding part-
ners [21] suggests this potential. In budding yeast, Cdk1
complexes appear to eventually drive their own dissocia-
tion from Wee1, by phosphorylation of the latter [1].
Therefore, high-level Cdk activity might shift the balance
of such competition. Another issue is whether Wee1 can
phosphorylate Cdk2 on Y15 in stable complexes with
cyclin A/Cdk2. Substantial evidence has accrued that
Cdk2 undergoes some Y15 phosphorylation and that this
modification can be limiting for Cdk2 activity, particu-
larly after DNA damage [43-48]. Swe1 can phosphorylate
Cdk1 in stable complexes [1]. However, the Swe1 NRD is
relatively divergent from the NRDs of higher eukaryotes,
and cyclin A/Cdk2 complexes might bind Wee1 in an ori-
entation that is not permissive for Cdk2 Y15 phosphory-

lation. Another issue is whether cyclin A/Cdk2
complexes might activate Wee1 by phosphorylation. The
Swe1 response to phosphorylation by Cdk1 in budding
yeast is biphasic in that Wee1 is initially activated by Clb/
Cdk1 phosphorylation, with stabilization of the Swe1-
Cdk complex, before being eventually inactivated and
dissociated [1]. Consistent with these findings, inactive
Cdk2 complexes show reduced binding to Wee1 in
human cells [21]. Initial evidence for activation of human
Wee1 by cyclin B/Cdk1 complexes has been obtained in
somatic cell extracts [26].
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