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Abstract
Cell division is an inherent part of organismal development, and defects in this process can lead to
developmental abnormalities as well as cancerous growth. In past decades, much of the basic cell-
cycle machinery has been identified, and a major challenge in coming years will be to understand
the complex interplay between cell division and multicellular development. Inevitably, this requires
the use of more complex multicellular model systems. The small nematode Caenorhabditis elegans
is an excellent model system to study the regulation of cell division in a multicellular organism, and
is poised to make important contributions to this field. The past decade has already seen a surge
in cell-cycle research in C. elegans, yielding information on the function of many basic cell-cycle
regulators, and making inroads into the developmental control of cell division. This review focuses
on the in vivo roles of cyclin-dependent kinases in C. elegans, and highlights novel findings implicating
CDKs in coupling development to cell-cycle progression.

Background
Caenorhabditis elegans is a small, soil-dwelling nematode
with a simple body plan formed by 959 somatic cells in
adult hermaphrodites and 1031 somatic cells in adult
males. Under laboratory conditions, C. elegans develops
from a one cell embryo to a fertile adult in 3–5 days,
depending on culture temperature. The life cycle of C. ele-
gans consists of an embryonic stage, 4 larval stages (L1–
L4), and an adult stage. Embryonic divisions generate 558
nuclei (a number of C. elegans tissues including the intes-
tine and hypodermis are syncytial, hence "nuclei" more
accurately describes the lineage) [1]). Nearly all embry-
onic cell-divisions are completed in the first half of
embryogenesis [1], and these early cleavages are largely
under the control of proteins and mRNA deposited in the
oocyte by the mother.

During the larval stages, 53 somatic blast cells will
undergo further divisions to generate the final 959 or
1031 somatic nuclei [2], while no somatic divisions take
place in the adult stage. Most larval divisions are normal
mitotic divisions, although the intestinal and hypodermal
nuclei also undergo several rounds of endoreplication [3].
The germline, which contains ~2000 germ cells in adults,
is populated by divisions of an additional 2 blast cells [4].

Studying cell division in C. elegans
C. elegans is a unique multicellular model system for stud-
ies of cell division because of its nearly invariable devel-
opmental program and cell lineage. The relative timing of
divisions, the orientation of division axes, and the final
cell fates, are all highly reproducible, and the entire cell
lineage from the one cell embryo to the adult has been
described [1,2]. Furthermore, cell divisions can be
observed in vivo under Nomarski DIC microscopy, and
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reporter genes such as green fluorescent protein (GFP) can
be used to mark specific cell-cycle phases or cell lineages
in live animals (figure 1). Thus, defects in the pattern of
cell divisions ran readily be detected.

The different phases of C. elegans development each offer
distinct advantages and disadvantages for cell-division
studies. For example, early embryonic cells are well suited
to study subcellular structures such as the spindle appara-
tus, and the physiology of adult hermaphrodites lends
itself exceptionally well to studies of meiotic maturation
(figure 2). In contrast, checkpoint controls and global
developmental control of cell division are best studied
during larval development, as these processes are mostly
absent during embryonic divisions, and the embryo is
therefore unsuitable for such studies.

The ability to use RNA interference (RNAi) as well as
mutant alleles offers a powerful toolkit to examine gene

function at different stages in the C. elegans life cycle. Ani-
mals lacking both copies of critical cell-cycle regulators are
necessarily derived from heterozygous parents. Since most
embryonic cell-divisions are completed on maternally
contributed stores of protein and mRNA, these mutants
frequently display phenotypes only during larval develop-
ment. In contrast, RNAi affects both maternal and embry-
onic mRNAs, and can be used to examine the embryonic
roles of cell-cycle regulators. Finally, RNAi by feeding, in
which dsRNA is delivered by way of the bacteria C. elegans
feeds on, allows for application of RNAi at different stages
of postembryonic development, and can be used to fur-
ther increase the range of developmental stages at which
gene function can be examined.

Eukaryotic cell cycle regulation
Progression through the eukaryotic cell cycle is controlled
by the activities of cyclin-dependent kinases (CDKs), the
founding members of which are the highly homologous

Using GFP markers to aid cell-cycle studiesFigure 1
Using GFP markers to aid cell-cycle studies. (Top) Schematic drawing of a late L1 larva with intestinal and ventral cord 
cells indicated. The cell lineage for an intestinal nucleus (In) and ventral cord precursor cell (P8) is drawn to the right. (Bottom) 
Nomarski DIC and GFP fluorescence image from a late L1 larva carrying a transgene expressing GFP under control of ribonu-
cleotide reductase regulatory sequences (Prnr::GFP). Imaged area corresponds approximately to the boxed area in the schematic 
drawing. GFP expression correlates with progression through S-phase, and can thus be used to distinguish a G1 arrest from a 
later arrest. In this image, Prnr::GFP is expressed in the descendants of P8.
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34kDa proteins encoded by the cdc2 gene in the fission
yeast Schizosaccharomyces pombe and the CDC28 gene in
the budding yeast Schizosaccharomyces cerevisiae [5-7].
Both yeasts use a single CDK combined with different cyc-
lin subunits to control progression through the division
cycle. In higher eukaryotes, the transitions between suc-
cessive phases of the cell cycle are controlled by the activ-
ities of multiple CDKs in combination with different
families of cyclins (figure 3). CDK activity is tightly con-
trolled by a combination of mechanisms. First, the levels
of available cyclin subunits are regulated through protein
synthesis and protein degradation [8,9]. Second, phos-
phorylation of several conserved residues can increase or
decrease the activity of CDKs (figure 3). To achieve full
activity of Cdk1, Cdk2, Cdk4 and Cdk6, a conserved Thre-
onine residue (T160 in human Cdk2) needs to be phos-

phorylated by the CDK-activating kinase (CAK) [10].
Multiple CDKs are phosphorylated on inhibitory residues
near the N-terminus (a single Tyrosine in Cdk4 and Cdk6
and adjacent Threonine and Tyrosine residues in Cdk1
and Cdk2) [11-16]. Cdk1 and Cdk2 are phosphorylated
by Wee1 and Myt1 kinases [14-16], while the kinase(s)
responsible for phosphorylating Cdk4 and Cdk6 are yet to
be discovered. Dephosphorylation of these residues is per-
formed by the Cdc25 family of phosphatases. Whereas
phosphorylation and dephosphorylation of Thr14/Tyr15
is critical for control of Cdk1 activity [11], the importance
of inhibitory phosphorylation in the other CDKs is less
well understood. For example, phosphorylation on the
corresponding sites in Cdk2 may have no or limited effect
on its activity [17,18].

The C. elegans reproductive systemFigure 2
The C. elegans reproductive system. (Top) Nomarski DIC image of an adult hermaphrodite. The hermaphrodite repro-
ductive system consists of two U-shaped gonad arms, in which germ cells develop in an assembly-line fashion from mitotic divi-
sions at the distal end to ovulation and fertilization at the proximal end [99]. Dotted lines surround the posterior gonad arm. 
(Bottom) Schematic drawing of one gonad arm. Germ nuclei are generated by mitotic divisions in response to a signal from the 
Distal Tip Cell (DTC) at the distal end of each gonad arm. As the nuclei move away from the DTCs they initiate meiosis and 
arrest at the pachytene stage of meiosis I. Around the time the nuclei reach the bend in the gonadal arm, oogenesis is initiated. 
The germ nuclei become fully enclosed by a plasma membrane, and the resulting oocyte grows dramatically in size. The germ 
cells exit pachytene, and progress through diplotene arresting for a second time in diakinesis, the final stage of meiotic 
prophase. The oocytes proceed in single file through the gonad arm, with the most mature oocyte present directly adjacent to 
the spermatheca.
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Finally, Cyclin/CDK activity can be blocked by CDK
inhibitors of the Ink4 and Cip/Kip families [19]. Paradox-
ically, Cip/Kip family members may also be required for
the assembly of Cdk4 and Cdk6 with D-type cyclins
[20,21]. Together, these mechanisms ensure a tightly reg-
ulated peak of CDK activity at the appropriate time.

C. elegans cell-cycle regulators
With the notable exception of the Ink4 family, all major
cell-cycle regulators found in mammals are also present in
C. elegans ([22,23] and table 1). The C. elegans genome
encodes 14 members of the CDK family [23]. Of these, 3
are core cell-cycle regulators, while 2 have largely cell-
cycle independent roles. The functions of the remaining 9
CDKs remain unclear to date.

Cell-cycle regulatory CDKs in C. elegans
CDK-1
The first cyclin dependent kinase studied in C. elegans is
encoded by the cdk-1 gene (originally named ncc-1 for
Nematode Cell Cycle) [24]. cdk-1 mutant animals fail to
undergo any larval cell divisions, while inactivation of
cdk-1 by RNAi blocks mitotic and meiotic divisions in the
germline of the injected animal, as well as mitotic division
of the one cell embryo [25]. Experiments using a temper-
ature sensitive cdk-1 allele demonstrated a critical role in
later larval divisions as well [25]. Thus, CDK-1 appears to
be essential for all C. elegans cell divisions.

cdk-1 mutant cells fail to undergo mitosis, but do express
a common S-phase marker: GFP under control of ribonu-
cleotide reductase regulatory sequences (Prnr::GFP) (figure
1). In addition, they incorporate the nucleotide analog
BrdU into their DNA [25]. Furthermore, the intestinal
nuclei are still able to undergo their normal 4 rounds of
endoreplication in cdk-1 mutant animals [25]. Thus, like
mammalian Cdk1, CDK-1 is specifically required for
mitosis. Importantly, these experiments demonstrated
that C. elegans uses specific CDKs to drive progression
through the cell cycle, similar to higher eukaryotes and
vertebrates.

Mammalian Cdk1 partners with A- and B-type cyclins. The
C. elegans genome encodes 2 predicted cyclin A homologs
(CYA-1 and CYA-2), three B-type cyclins (CYB-1, CYB-2.1
and CYB-2.2), and one B3 type cyclin (CYB-3) [26].
Genome wide RNAi screens indicate that all but CYA-2 are
required for embryonic cell divisions [27-30], and CYB-1
and CYB-3 were shown to bind to CDK-1 in vivo [31]. A
detailed characterization of the individual functions of
these cyclins is still lacking, however.

Regulation of CDK-1 in meiotic maturation
In addition to its role in regulating mitotic cell divisions,
Cdk1 plays a key role in the maturation of developing
oocytes of higher eukaryotes as the kinase component of
Maturation Promoting Factor (MPF). As in other organ-
isms, C. elegans CDK-1 is critical for meiotic maturation
and completion of meiotic divisions [25,32]. The mecha-
nisms that activate MPF when maturation is triggered are
not fully known in any system, and vary between organ-
isms. For example, Xenopus laevis oocytes contain a stock-
pile of pre-formed Cdk1/cyclin B complexes (pre-MPF)
that is activated by dephosphorylation of Thr14 and
Tyr15, while other amphibians contain monomeric Cdk1
and depend on synthesis of B-type cyclins for MPF activa-
tion [33,34].

A recent study examining the role of the C. elegans Myt1
homolog WEE-1.3 indicates that in C. elegans, pre-formed
cyclin B-CDK-1 complexes are present and kept inactive

Cell cycle control in higher eukaryotesFigure 3
Cell cycle control in higher eukaryotes. (Top) Cyclin-
CDK complexes in higher eukaryotes, and their approximate 
times of activity during the cell cycle. For clarity, extended 
cyclin families are indicated only by their class name (i.e. cyc-
lin D rather than cyclin D1, D2, D3). The two known families 
of CDK inhibitors are also indicated. R indicates the Restric-
tion point, beyond which cells do not required growth-factor 
signaling to complete cell division. (Bottom) Control of Cdk1 
activity by phosphorylation. Phosphorylation of a conserved 
Thr residue by CAK is required for full activation. Phosphor-
ylation of Tyr15 by Wee1 or both Thr14 and Tyr15 by Myt1 
blocks Cdk1 activity, and is counteracted by members of the 
Cdc25 family of phosphatases.

M
G1

S

G2

Cdk4/6
cyclin D

Cdk2
cyclin E

Cdk2
cyclin A

Cdk1
cyclin A/B

Cip/Kip

Ink4

R

T Y T

CAK

CDC25

Wee1/Myt1

Cdk1
Page 4 of 12
(page number not for citation purposes)



Cell Division 2006, 1:6 http://www.celldiv.com/content/1/1/6
through negative phosphorylation by WEE-1.3 [32]. In
wild-type animals, only the most proximal oocyte initi-
ates maturation in response to a component secreted by
sperm termed major sperm protein (MSP) [35]. Loss of
wee-1.3 results in precocious oocyte maturation, which
can be blocked by the inactivation of cdk-1 or all 4 C. ele-
gans B-type cyclins together. Furthermore, in the absence
of wee-1.3, inhibitory phosphorylation of CDK-1 is not
observed [36]. Thus, the precocious oocyte maturation in
wee-1.3(RNAi) oocytes is likely the result of an inability to
keep cyclin B-CDK-1 complexes inactive in the more distal
oocytes.

Interestingly, oocyte maturation is not initiated when wee-
1.3 is inactivated in animals lacking sperm and thus MSP

[32], indicating that sperm is not only required for matu-
ration of the most proximal oocyte, but also for the gener-
ation of cyclin B-CDK-1 complexes in more distal oocytes.
How then are all but the most proximal oocyte blocked
from initiating maturation? It seems likely that mecha-
nisms in addition to MSP remain to be discovered, as MSP
and its receptor VAB-1 are detectable around at least 3
oocytes [37], and MAPK phosphorylation, an indicator of
MSP activity, is also found in multiple oocytes [35].

Another level of control over Cdk1 activity is degradation
of B-type cyclins at the end of mitosis, which is triggered
by the anaphase-promoting complex/cyclosome (APC/C)
[9]. The dependence upon the APC/C in meiosis varies
between organisms. For example, in S. Cerevisiae two

Table 1: CDKs and regulatory proteins encoded by the C. elegans genome

Protein C. elegans homolog Function
Protein name Cosmid name

CDKs

CDK1 CDK-1 T05G5.3 Entry into mitosis(e) [25]
CDK2 - K03E5.3 S phase entry/progression(p)

CDK4/CDK6 CDK-4 F18H3.5 G1/S progression(e) [64, 100]
CDK5 CDK-5 T27E9.3 Neuronal development/functioning(p)

CDK7 CDK-7 Y39G10AL.3 CDK activating kinase, RNA pol II phosphorylation(e) [81]
CDK8 CDK-8 F39H11.3 Transcriptional regulation(p)

CDK9 CDK-9 H25P06.2 RNA pol II phosphorylation(e) [82]
Cyclins

Cyclin A CYA-1 ZK507.6 CDK-1/CDK-2 partner(p)

CYA-2 F59H6.7 CDK-1/CDK-2 partner(p)

Cyclin B CYB-1 ZC168.4 CDK-1 partner(e) [31]
CYB-2.1 Y43E12A.1 CDK-1 partner(p)

CYB-2.2 H31G24.4 CDK-1 partner(p)

Cyclin B3 CYB-3 T06E6.2 CDK-1 partner(e) [31]
Cyclin C CIC-1 H14E04.5 CDK-8 partner(p)

Cyclin D CYD-1 Y38F1A.5 CDK-4 partner(e) [64]
Cyclin E CYE-1 C37A2.4 CDK-2 partner(p)

Cyclin H CYH-1 Y49F6B.1 CDK-7 partner(p)

Cyclin T CIT-1.1 F44B9.4 CDK-9 partner(p)

CIT-1.2 F44B9.3 CDK-9 partner(p)

p35 CDKA-1 T23F11.3 CDK-5 activating subunit(p)

Other

Cip/Kip CKI-1 T05A6.1 Negative regulator of G1 progression, likely through inhibition of CDK-2(e) [70]
CKI-2 T05A6.2 Unknown

Wee1/Myt1 WEE-1.1 F35H8.7 Negative regulator of CDK-1(p)

WEE-1.3 Y53C12A.1 Negative regulation of meiotic progression, likely through CDK-1 phosphorylation(e) [32]
Cdc25 CDC-25.1 K06A5.7 Dephosphorylation of inhibitory CDK residues(p)

CDC-25.2 F16B4.8 Dephosphorylation of inhibitory CDK residues(p)

CDC-25.3 ZK637.11 Dephosphorylation of inhibitory CDK residues(p)

CDC-25.4 R05H5.2 Dephosphorylation of inhibitory CDK residues(p)

CKS1 DOM-6 C09G4.3 Required for exit from meiosis and mitosis(e) [97]

C. elegans homologs of mammalian CDKs for with established functions, their predicted cyclin partners, and several key regulators of CDK activity.
(e) function experimentally determined in C. elegans
(p) function predicted based on homologs in other organisms
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rounds of APC/C activity sequentially degrade meiosis
specific cohesin complexes containing Rec8 [38-40],
while APC/C is dispensable for meiosis I in Xenopus
oocytes [41,42].

In C. elegans, inactivation of the APC/C blocks the met-
aphase to anaphase transition in meiosis I in oocytes and
sperm [43-48]. Although the role of cyclin-B degradation
has not been directly studied, protein levels of the B-type
cyclins CYB-1 and CYB-3 are high in maturing oocytes,
and quickly drop in meiosis I [49,50]. Furthermore, inac-
tivation of apc-11 stabilizes CYB-1 levels [49]. It is likely
therefore that degradation of B-type cyclins by the APC/C
plays a role in progression through meiosis I in C. elegans.

Interestingly, C. elegans APC/C does not appear to play a
key role in progression through meiosis II [45]. Consist-
ent with this observation, two groups recently identified a
novel ubiquitin ligase complex to be required for exit
from meiosis II [49,50]. This E3 ubiquitin ligase complex
contains the cullin CUL-2, ELC-1 elongin C, RBX-1 Rbx,
and the novel component ZYG-11. The B-type cyclins
CYB-1 and CYB-3 appear to be regulated by the CUL-2
based E3, as their expression levels are stabilized upon
loss of E3 activity. CYB-1 and CYB-3 appear to have par-
tially non redundant functions in meiosis II, as loss of cyb-
3 rescues the duration of anaphase II (but not metaphase
II) in a zyg-11 mutant [50], while loss of cyb-1 partially
restores the duration of metaphase II in a cul-2 mutant
[49]. These experiments indicate that an alternative mech-
anism of B-type cyclin degradation is used for progression
through meiosis II in C. elegans.

The functions of the APC/C and CUL-2/ZYG-11 com-
plexes may not be entirely restricted to one meiotic phase,
as zyg-11 and cul-2 do enhance weak APC/C alleles, point-
ing to a partially redundant function in meiosis I. Further
experiments will be needed to determine the exact roles of
cyclin degradation in meiosis, and to determine how REC-
8 is degraded in meiosis II.

CDK-2
Although no definitive C. elegans Cdk2 homolog has been
identified, the most likely candidate is encoded by the
K03E5.3 gene, whose predicted protein product shares
38% and 43% amino acid identity with human and
mouse Cdk2, respectively. Inactivation of K03E5.3 by
RNAi causes highly variable defects, with animals arrest-
ing as embryos or during various larval stages [25].

In other organisms, Cdk2 partners with A- and E-type cyc-
lins. The functions of the C. elegans cyclin E gene cye-1
have been studied extensively. cye-1 mutant animals have
cell division defects only during the later larval stages [51-
53]. This most likely does not indicate the CYE-1 is not

required earlier, but may be due to perdurance of mater-
nal RNA or protein contribution [51,53]. The cell division
defects were studied in most detail in the vulval precursor
cells (VPCs), a series of 6 cells generated in late L1. Three
of these undergo a series of divisions in the L3 stage to
form the adult vulva. In cye-1 mutants, VPCs initiate divi-
sion at the same time as wild-type, and undergo appropri-
ate terminal differentiation at the normal time too.
However, only 2 rounds of division take place compared
to 3 in wild type. Based on Prnr::GFP expression, the delay
in cell division is due to a prolonged G1 phase. Thus, cye-
1 appears to be required for G1/S progression, similar to
mammalian cyclin E-Cdk2 complexes.

RNAi for cye-1 causes a cell division arrest when the
embryo has reached the approximately 100 cell stage [51],
despite the fact that CYE-1 is expressed in all dividing cells
in the embryo [53]. Three possibilities can explain this
observation. First, RNAi may not fully eliminate cye-1
function. The fact that RNAi for cye-1 reduces CYE-1 pro-
tein levels below detection limits in immunostaining of
early embryos argues against this possibility [53]. Second,
other cyclin-CDK complexes may compensate for loss of
CYE-1. Finally, the rapid early embryonic cell divisions
may not require cyclin E-Cdk2 activity until the establish-
ment of proper G1 phases. This last hypothesis does not
preclude a role for cyclin A-Cdk2 complexes in early
embryogenesis, a possibility that has not yet been investi-
gated.

The results in C. elegans thus indicate that CYE-1, presum-
ably complexed to a Cdk2 homolog, is essential for all cell
divisions but the early embryonic divisions. An essential
role for Cdk2 was also found in experiments in mamma-
lian tissue culture and Drosophila [54-58]. It is surprising,
therefore, that Cdk2 knockout mice were found to be via-
ble for up to 2 years after birth [59,60], and mice lacking
both E-type cyclins only show defects in late embryogen-
esis [61,62]. Although a recent report provides evidence
that in the absence of Cdk2, cyclin E-Cdk1 complexes may
regulate the G1 to S transition [63], this does not explain
the relatively mild defects of cyclin E knockout mice.

CDK-4
The C. elegans genome encodes only one D-type cyclin,
CYD-1, and one Cdk4/6 related kinase, CDK-4, which
have been shown to interact in vitro [64]. This greatly
reduces problems of redundancy in studying these gene
families. cyd-1 and cdk-4 mutant animals complete embry-
ogenesis, but fail to initiate larval somatic blast cell divi-
sions after hatching [64,65], although a few rounds of
division of the somatic gonad precursor cells (SGPs) do
occur. The arrested cells fail to express the Prnr::GFP S-
phase marker, and arrest with a 2N DNA content [64,65].
Conversely, overexpression of cyd-1and cdk-4 together is
Page 6 of 12
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sufficient to drive expression of Prnr::GFP [64]. Develop-
mental processes such as cell growth and migration of the
P blast cells to the ventral cord still occur [64,65], indicat-
ing that the cell-cycle arrest is not a secondary effect of
interfering with development in general. Based upon
these results, C. elegans CYD-1/CDK-4 complexes are
essential for G1 to S phase progression in postembryonic
cells.

RNAi of cyd-1 or cdk-4 does not block embryonic divisions
[64,65]. The only effects on embryonic development were
found in cyd-1 mutant animals, which fail to undergo the
final embryonic divisions of 4 intestinal precursor cells
[65] and 2 coelomocyte precursor cells [66]. Both of these
cell types divide late in embryogenesis following a pro-
longed G1 arrest [1]. cdk-4 mutants do not show defects in
these tissues, which could be explained if CDK-4 protein
is more stable then CYD-1. Expression of CYD-1 and
CDK-4 is observed starting in mid-embryogenesis, at a
time when most cell divisions have completed, and is
largely restricted to postproliferative lineages [64]. Thus,
CYD-1/CDK-4 activity appears to be largely dispensable
for embryonic cell divisions.

Cyclin D-Cdk4/6 targets
Whereas Cdk1 and Cdk2 likely have a multitude of tar-
gets, only two major functions have been proposed for
mammalian cyclin D-Cdk4/6 complexes. First, phosphor-
ylation of pRb by cyclin D-Cdk4/6 and cyclin E-Cdk2
inactivates pRb, and allows for expression of S-phase
genes [67,68]. Second, cyclin D-Cdk4/6 complexes are
thought to sequester members of the Cip/Kip family of
CDK inhibitors, which may contribute to the activation of
cyclin E-Cdk2 [19]. An important question that remains
unanswered is the relative contribution of these mecha-
nisms to the G1 to S transition function of cyclin D-CDKs.

C. elegans has a single pRb family member, LIN-35 [69],
and two Cip/Kip related proteins, CKI-1 and CKI-2
(referred to as CKI-1/2 from hereon) [70]. If inactivation
of LIN-35 or CKI-1/2 is an important function of CYD-1/
CDK-4, then inactivating these proteins through RNAi or
mutant alleles should rescue the cyd-1 and cdk-4 mutant
phenotypes. Indeed, inactivation of lin-35 or of cki-1/2
rescued multiple aspects of the cyd-1 and cdk-4 pheno-
types, including body size, expression of Prnr::GFP and cell
division [65]. This indicates that LIN-35 and CKI-1/2 act
downstream of CYD-1 and CDK-4.

Loss of lin-35 or cki-1/2 did not fully rescue the cyd-1 and
cdk-4 mutant defects, and important differences in the
manner of rescue were also apparent [65]. For example,
loss of lin-35 was less proficient at restoring divisions in
the P-cell lineage than loss of cki-1/2. In contrast, loss of
lin-35 resulted in the normal 4 rounds of endoreplication

in the intestinal nuclei, while loss of cki-1/2 restored only
1 round of DNA replication, likely because additional
rounds of DNA replication require transcription of S-
phase genes. These results indicate that lin-35 and cki-1/2
play at least partially non-overlapping roles in G1/S pro-
gression. Indeed, the effects of inactivation of cki-1/2 and
lin-35 were additive in the intestinal cell lineage [65].
Whereas either alone could restore only a limited number
of nuclear divisions in cyd-1 mutants, inactivation of both
resulted in a number of divisions exceeding that in wild-
type animals.

These experiments demonstrate that LIN-35 and CKI-1/2
likely act downstream of CYD-1/CDK-4 in parallel path-
ways. Two important questions that still need to be
addressed are whether CKI-1/2 are inactivated by seques-
tering or through an alternative mechanism requiring
CYD-1/CDK-4 kinase activity, and whether LIN-35 and
CKI-1/2 are the only CYD-1/CDK-4 targets.

Comparisons to other organisms
Drosophila mutants lacking the single D-type cyclin CycD,
the sole Cdk4/6 related protein Cdk4, or both, develop
into viable adults, although they are smaller, have a
decreased cellular growth rate, and show reduced fertility
[71,72]. It appears that in Drosophila, CycD/Cdk4 prima-
rily stimulate cell growth [71,73]. These results contrast
with those observed in C. elegans where growth does not
appear to be directly regulated by CYD-1 or CDK-4 [65].
More recent results indicate that Drosophila CycD/Cdk4
can influence G1/S progression, as Cdk4 can induce
ectopic S-phase entry in the eye imaginal disk [74]. A pos-
sible contributing factor to the apparent lack of a require-
ment for CycD and Cdk4 is the lack of binding of Dacapo,
the Drosophila p27 Cip/Kip family member, to CycD/
Cdk4 [71]. Flies may therefore not use sequestering of
Cip/Kip family members by cyclin D-Cdk4/6 complexes
as a mechanisms of driving G1 progression.

Mouse embryos that lack all three D-type cyclins [75], or
both Cdk4 and Cdk6 [76], die of haematopoietic abnor-
malities after day E13.5. Mice are thus able to undergo sig-
nificant proliferation and development in the absence of
cyclin D-Cdk4/6. It is possible that, in mice, cell cycle reg-
ulators show more plasticity than expected from tissue
culture experiments. Other kinase complexes may take
over the role of cyclin D-CDKs, including unusual combi-
nations such as cyclin D-Cdk2. This is supported by the
finding that mouse embryonic fibroblasts (MEFs) derived
from these knockouts are critically dependent on Cdk2
activity for proliferation [75,76]. Alternatively, cyclin D-
Cdk4/6 activity may be dispensable during rapid embry-
onic development, like in C. elegans, but play a critical role
in the resumption of cell division following a prolonged
period of arrest. Support for this hypothesis stems from
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the observation that haematopoietic stem cells from cyc-
lin D knockout mice are severely deficient in their ability
to proliferate both in vivo and in vitro [75]. Furthermore,
cyclin D and CDK-4/6 knockout MEFs show defects in
cell-cycle re-entry upon serum stimuation [75,76]. Future
experiments using conditional knockout mice to examine
the roles of D-type cyclins and Cdk4/6 in adult tissues are
required to resolve these questions.

C. elegans CDKs with cell-cycle independent 
roles
Although CDKs are best known for their role in regulating
cell-cycle progression, the functions of the CDK family are
not limited to this process, and include regulation of tran-
scription, neuronal development, and other processes
[77]. Cdk7, Cdk8, and Cdk9 are each implicated in the
regulation of gene transcription through phosphorylation
of the C-terminal domain (CTD) of RNA polymerase II
[10,78,79], while CDK5 has a well described role in devel-
opment of the central nervous system [80]. C. elegans has
homologs of each of these kinases [23], but only CDK-7
and CDK-9 have been studied in detail.

CDK-7
In higher eukaryotes, Cdk7 plays a unique dual role in reg-
ulating the activity of other CDKs as well as transcription.
Cdk7 forms the kinase subunit of CAK, the CDK activat-
ing kinase responsible for the activating phosphorylation
of many CDKs on a Threonine residue in the T-loop
(Thr161 in human Cdk1) [10]. In addition, Cdk7 is part
of the general transcription factor TFIIH, which stimulates
transcription by phosphorylating the CTD of Pol II [10].

C. elegans has a single Cdk7 homolog, encoded by the cdk-
7 gene [23]. cdk-7 mutants have dramatically reduced Pol
II CTD phosphorylation, and fail to initiate transcription
of all embryonic genes examined [81]. These results indi-
cate a general requirement for CDK-7 in embryonic
mRNA transcription through CTD phosphorylation.

Complete inactivation of cdk-7 by RNAi blocks meiosis
and results in a one-cell embryonic arrest, similar to RNAi
of cdk-1 [81]. This is consistent with CDK-7 being respon-
sible for the activating phosphorylation of CDK-1. In
addition, partial loss of cdk-7 function resulted in an
increased cell division time [81], with prolonged mitosis
as well as interphase, which indicates that CDK-7 regu-
lates additional CDKs as well, in accordance with the role
of Cdk7 in other organisms in activating multiple CDKs.

CDK-9
In conjunction with T-type cyclins, Cdk9 forms a positive
transcription elongation factor termed P-TEFb, which reg-
ulates transcriptional elongation through phosphoryla-
tion of the Pol II CTD (reviewed in [79]). Inhibition by

RNAi of C. elegans cdk-9 or both T-type cyclins, cyt-1.1 and
cyt-1.2, resulted in developmental defects similar to those
caused by inactivation of essential transcription factors
[82]. In addition, inactivation of cdk-9 or cyt-1.1 and cyt-
1.2 together blocked the transcription of embryonic
reporter genes [82]. The CTD is phosphorylated on two
Serine residues: Ser 2 and Ser 5. Ser 5 phosphorylation is
highest when Pol II is at the promoter, while Ser 2 phos-
phorylation is associated with the elongation step [78,83].
In accordance with Cdk9 being involved in transcriptional
elongation, inactivation of cdk-9 or cyt-1.1 and cyt-1.2
together dramatically reduces Ser 2 phosphorylation, but
not Ser 5 phosphorylation [82]. These experiments indi-
cate that C. elegans P-TEFb plays a broad role in the tran-
scription of embryonic genes.

Developmental control of C. elegans cell division
During the life of C. elegans, environmental factors can
cause a global withdrawal from cell division at two stages.
First, postembryonic development is not initiated in the
absence of food. Second, in conditions of limited food or
overcrowding, animals can enter an alternative larval
stage termed dauer, which is geared toward long-term sur-
vival. Entry into and exit from the dauer stage is accompa-
nied by cessation and resumption of cell divisions. As in
other model systems, developmental control of C. elegans
cell division involves regulators of G1 progression, nota-
bly CYD-1/CDK-4, and the Cip/Kip family member CKI-
1.

As mentioned above, CYD-1 and CDK-4 are required for
initiation of postembryonic blast cell divisions, and over-
expression of CYD-1 and CDK-4 is sufficient for entry into
S-phase. However, little is known about the environmen-
tal signals that lead to activation of CYD-1/CDK-4. Simi-
larly, the activity of CKI-1 is required for the
developmental cell cycle arrest of somatic cells in starved
larvae and dauer larvae, and loss of cki-1 by RNAi induces
hyperproliferation in the embryo and multiple postem-
bryonic cell lineages [70,84]. The CKI-1 promoter region
is large and complex, and CKI-1 levels appear to be tran-
scriptionally regulated through lineage specific transcrip-
tion factors [70,85]. With respect to the L1 arrest, a recent
report demonstrated a role for insulin/insulin-like growth
factor signaling in regulating CKI-1 transcription [86].

In addition to transcriptional regulation, CKI-1 levels may
be regulated through ubiquitin-dependent degradation
[70,87]. The susceptibility of CKI-1 to degradation may be
phosphorylation dependent, as the CDC-14 phosphatase
has recently been shown to regulate CKI-1 activity [88].

An important question that has to be addressed is to what
extent CKI-1 inactivation occurs downstream of CYD-1/
CDK-4 activity, and to what extent CKI-1 can be regulated
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independently of CYD-1/CDK-4. Interestingly, in addi-
tion to regulating G1 progression, CKI-1 may also have a
more direct function in cell fate specification. In cki-
1(RNAi) animals a higher than normal number of distal
tip cells (DTCs) (figure 2) is observed, which do not stem
from duplication of DTCs but arise from other somatic
gonad cells that normally do not produce DTCs, indicat-
ing a role for CKI-1 in cell-fate specification [89].

In addition to regulation of cell division by environmen-
tal cues, cell-cycle regulators can affect downstream devel-
opmental events, as described in two recent papers
[31,90]. In one, CYD-1 activity is required for the asym-
metric division of a precursor cell of the somatic gonad,
while a second study identified a novel role for CDK-1 in
coupling cell-cycle progression to cell differentiation.

Regulation of an asymmetric division by CYD-1
In screens for abnormal gonadogenesis, a novel cyd-1
allele (q626) was identified that specifically affects the
asymmetric division of the 2 somatic gonad precursor
(SGP) cells, and not cell division in general [90]. In wild-
type animals, the SGPs divide asymmetrically in males,
and symmetrically in hermaphrodites, and express sex
specific markers. In cyd-1(q626) males however, the SGPs
divide symmetrically, and express hermaphrodite specific
markers [90]. The result is a disorganized feminized
gonad. CYD-1 therefore appears to regulate the asymmet-
ric division and sex specific fate specification of the SGPs.

The cyd-1(q626) allele specifically affects cell fate specifi-
cation of the SGPs, and is likely a partial loss-of-function
cyd-1 allele. However, most animals with complete loss of
cyd-1 function still undergo one or two SGP divisions,
likely due to maternal contribution, and these animals
show similar defects in cell-fate specification as cyd-
1(q626) animals [90]. Further analysis showed that loss of
lin-35 Rb, efl-1 E2F, dpl-1 DP or cki-1,2 Cip/Kip all sup-
pressed the phenotype of cyd-1(q626) [90]. These results
indicate that CYD-1 regulates the asymmetric SGP divi-
sion through the pRB/E2F pathway. A candidate target of
the E2F/RB pathway for regulation of SGP division is fkh-
6, which encodes a forkhead transcription factor required
for the male specific SGP division and differentiation. The
fkh-6 promoter contains several putative E2F binding sites
[90]. Expression of an FKH-6 reporter construct is abol-
ished or delayed in cyd-1(q626) mutants, while loss of efl-
1 restores transcription, indicating that EFL-1 represses
fkh-6 transcription in wild-type animals [90]. A role for
E2F in cell-fate specification of the SGPs fits with more
recent findings that E2F transcription factors have roles in
processes other than G1/S progression, including differen-
tiation [91].

The cyd-1(q626) allele only affects the SGP divisions.
Another recently isolated cyd-1 allele, cyd-1(cc600), shows
similar lineage specific defects [66]. This allele was iso-
lated in a screen for altered numbers of coelomocytes,
four of which arise from two precursor cells that divide
late in embryogenesis, after a period of quiescence. In cyd-
1(cc600) mutants, the final coelomocyte divisions do not
occur, while differentiation and other cell divisions are
unaffected [66]. The allele recovered is a mutation in a
splice donor site, likely resulting in partial loss of func-
tion. Different tissues clearly vary in their requirement for
CYD-1.

A role for CDK-1 in coupling cell division to cell fate 
specification
Several cdk-1 alleles were identified in screens for embry-
onic cell fate transformation that cause an excess-endo-
derm phenotype, but no overt defects in cell division [31].
The observed excess-endoderm phenotype appears to be
caused by stabilization of a protein called OMA-1, which
normally prevents the precocious degradation of mater-
nally provided cell fate determinants in the early embryo.
Stabilization of OMA-1 causes delayed degradation of
multiple cell-fate determinants, including SKN-1, PIE-1,
MEX-3, and MEX-5 [92].

OMA-1 is normally degraded shortly after entry into the
first mitotic division [93,94], and these experiments indi-
cate that CDK-1 is required for the timely degradation of
OMA-1. Coupling OMA-1 degradation to mitosis through
the activity of CDK-1 could provide a convenient means
to prevent degradation of cell fate determinants before
they have been segregated into the appropriate daughter
cell. For example, in the 2 cell embryo, MEX-5 is localized
to the anterior blastomer, and promotes the degradation
of PIE-1, which is restricted to the posterior blastomer
[95,96]. Delaying degradation of OMA-1 until after mito-
sis may protect PIE-1 from degradation in the one cell
embryo, in which MEX-5 and PIE-1 have to co-exist [31].

Regulation of OMA-1 stability by CDK-1 is likely per-
formed in a complex with the B-type cyclin CYB-3, as
RNAi for cyb-3 also resulted in stabilization of OMA-1
protein [31]. The cdk-1 mutations alter residues located in
the T-loop, involved in cyclin binding and access of ATP
to the kinase. Nevertheless, CDK-1 showed normal bind-
ing to CYB-1 and CYB-3, as well as CKS-1, and both cyclin
B kinase complexes exhibited near wild-type Histone H1
kinase activity [31]. Thus, the effects of the mutations on
CDK-1 are either very subtle, or affect the interaction of
CDK-1 kinase complexes with specific substrates. No
direct phosphorylation of OMA-1 by CDK-1 was
observed, indicating that the effect of CDK-1 on OMA-1 is
likely indirect.
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In the same screen an allele of cks-1 was identified that
also stabilizes OMA-1 protein levels. cks-1 is one of two C.
elegans genes homologous to Cks/Suc1, a conserved CDK
binding protein whose role(s) in cell division remain
somewhat of an enigma [97]. The cks-1 mutation identi-
fied affects binding of CKS-1 to CDK-1, and also results in
a reduction in kinase activity of CDK-1/CYB-3 towards
Histone H1. These experiments uncover a potential role
for cks-1 in modulating the inactivation of OMA-1 by
CDK-1 [31].

These findings demonstrate a specific role for CDK-1 in
coupling mitosis to the degradation of OMA-1, and thus
to the proper asymmetric distribution of cell-fate determi-
nants like PIE-1. They also exemplify the power of forward
genetics in the identification of subtle alleles that affect
only particular aspects of gene function, something that
cannot be accomplished through, for example, RNA inter-
ference.

Conclusion
As the focus in cell-cycle research shifts from unicellular
organisms and cell-lines to in vivo research in the much
more complex setting of a multicellular organism, C. ele-
gans is well positioned as a model in which to study cell
division during multicellular development. Already, sig-
nificant novel findings have been made in C. elegans,
including the discovery of the Cullin family of E3 ubiqui-
tin ligase subunits [98], the developmental regulation of
cell divisions through the CDC-14 phosphatase and CKI-
1 [88], or the finding that CDK-1 can affect cell-fate spec-
ification [31]. In the future, research in C. elegans will con-
tinue to help elucidate the functioning of the cell-cycle
machinery and the interplay between animal develop-
ment and cell division.
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