Skip to main content

Table 1 The relation of transition metals to pyroptosis and ferroptosis. Please note that the protective factors and pathways are underlined

From: The interplay of transition metals in ferroptosis and pyroptosis

Transition metal

Pathways related to ferroptosis

Pathways related to pyroptosis

Fe

- ROS generation (Fenton reaction) [138, 139]

- LOX cofactor [8]

- GSH-GPX4 ROS suppression [145]

- heme oxygenase [148, 151]

- NCOA4 ferritinophagy [157]

- p53 [152]

- ROS-Tom20-Bax-Caspase-GSDME [45]

- ROS-NLRP3-ASC-Caspase-1 [161]

Zn

- ZIP-7 [178]

- NRF2/HO-1/GPX4 defence pathway [179]

- lipoxygenase [181]

- MT antioxidative function [169]

- NLRP3-ASC-Caspase-1 [11, 183]

- ZEB2 [184]

- TRPC6-NLRP3-ASC-Caspase-1 [47]

Se

- GPX4 [188, 192]

- TRIT1 isopenthenylation of GPX4 Sec-tRNA [193]

- TFAP2c [191]

-Sp1 [195]

-NFR2 (protective) [197]

- Ebselen [198]

- GPX4 PI3K/AKT/PTEN [200]

- GPX4-NLRP3 inhibition [201]

- selenium deficiency ROS/NLRP3/IL-1β [204]

- selenium deficiency TXRND3 dysregulation [205]

- selenium deficiency-miR-1656-GPX4-NLRP3 [188]

Cu

- autophagic GPX4 degradation [215]

- mitochondria perturbation and loss of antioxidant capacity in copper depletion [216]

- dysregulation of iron homeostasis [217]

- IRE1α/XBP1(ER stress)-NLRP3 [49]

Mo

- catalytic generation of ROS [219]

- unclear

- possibly PTEN/PI3K/AKT [224] or Nrf2-mediated antioxidant defence response inhibition [223]

Co

- Fenton-like reaction [228]

- ROS-NLRP3-Casspase-1 [229]

- GDSME-Caspase-3/8/9 activation [230]

Ni

- dysregulation of iron homeostasis [234]

- downregulation of GPX4, FTH1, NCOA4 (Mitochondria damage and ferroptosis involved in Ni-induced hepatotoxicity in mice) [234]

- in SelM KO mice Ni up regulates ASC, AIM2, NLRP3, Caspase-1, IL-18 and IL-1β [239]

Pt

- cis-platin inactivates GPX and depletes GSH [239].

- cis-platin increases the expression of transferrin receptor and ferritin, which increases cellular iron levels [240]

- activation of vitamin D receptor alleviates cis-platin induced ferroptosis [243]

- cis-platin bound 4-carboxylphenylboronic acid scavenges GSH [249]

- cis-platin activates the MEG3-NLRP3-Caspase-1-GSDMD axis [51]

- cis-platin induces the CAPN1/CAPN2-BAK/BAX-Caspase-9-Caspase-3-GSDME pathway [53]

- Cis-platin inhibits Caspase-3-GSDMD pathway in non-cancerous cells [250]

- Lobaplatin-Caspase-3-GSDME [56]

- Lobaplatin-JNK-Bax-Cytochrome c-Caspase-3/9, Lobaplatin-cIAP1/2 [57]

- Pt II complexes- cGAS-STING pathway [251]

Cd

- dysregulation of iron homeostasis by HO-1 activation [256]

- ER stress mediated ferritinophagy [257]

- PERK-eIF2α-ATF4-CHOP pathway [46, 257]

- inhibition of KEAP1-Nrf2/ARE pathway [263]

- alteration of miR-34a-5p/Sirt1axis [280]

- alteration of the Gpx4/Ager/p65 axis [265, 271]

- ROS-NLRP3-Caspase-1 [58]

- p38 MAPK- NF-κB p65-leading to elevation of proinflammatory cytokines [59]

- IRE1α/XBP1(ER stress)-NLRP3 [269]

Hg

- GPX4 downregulation [271]

- in LPS treatment Hg disrupts ROS production and inhibits the ASC pyroptosome and GDSMD cleavage

Pb

- GPX4, SLC7a11, Tfrc, and Slc40a1 alterations [274]

- Pb increases NLRP3 expression and Caspase-1 cleavage [53]

U

- increased iron levels and decrease in GPX activity [277]

- gamma radiation alters the levels of TRFC, SLC3A2, FTH1, ACSL4, GPX4 [278]

- gamma radiation itself generates ROS [279]

no data